Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509190

RESUMO

Recently, researchers have employed metal-organic frameworks (MOFs) for loading pharmaceutically important substances. MOFs are a novel class of porous class of materials formed by the self-assembly of organic ligands and metal ions, creating a network structure. The current investigation effectively achieves the loading of adenosine (ADN) into a metal-organic framework based on cyclodextrin (CD) using a solvent diffusion method. The composite material, referred to as ADN:ß-CD-K MOFs, is created by loading ADN into beta-cyclodextrin (ß-CD) with the addition of K+ salts. This study delves into the detailed examination of the interaction between ADN and ß-CD in the form of MOFs. The focus is primarily on investigating the hydrogen bonding interaction and energy parameters through the aid of semi-empirical quantum mechanical computations. The analysis of peaks that are associated with the ADN-loaded ICs (inclusion complexes) within the MOFs indicates that ADN becomes incorporated into a partially amorphous state. Observations from SEM images reveal well-defined crystalline structures within the MOFs. Interestingly, when ADN is absent from the MOFs, smaller and irregularly shaped crystals are formed. This could potentially be attributed to the MOF manufacturing process. Furthermore, this study explores the additional cross-linking of ß-CD with K through the coupling of -OH on the ß-CD-K MOFs. The findings corroborate the results obtained from FT-IR analysis, suggesting that ß-CD plays a crucial role as a seed in the creation of ß-CD-K MOFs. Furthermore, the cytotoxicity of the MOFs is assessed in vitro using MDA-MB-231 cells (human breast cancer cells).


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Neoplasias , beta-Ciclodextrinas , gama-Ciclodextrinas , Humanos , Estruturas Metalorgânicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ciclodextrinas/química , beta-Ciclodextrinas/química , Neoplasias/tratamento farmacológico
2.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512663

RESUMO

Quercetin (QRC), a flavonoid found in foods and plants such as red wine, onions, green tea, apples, and berries, possesses remarkable anti-inflammatory and antioxidant properties. These properties make it effective in combating cancer cells, reducing inflammation, protecting against heart disease, and regulating blood sugar levels. To enhance the potential of inclusion complexes (ICs) containing ß-cyclodextrin (ß-CD) in cancer therapy, they were transformed into nano-inclusion complexes (NICs). In this research, NICs were synthesized using ethanol as a reducing agent in the nanoprecipitation process. By employing FT-IR analysis, it was observed that hydrogen bonds were formed between QRC and ß-CD. Moreover, the IC molecules formed NICs through the aggregation facilitated by intermolecular hydrogen bonds. Proton NMR results further confirmed the occurrence of proton shielding and deshielding subsequent to the formation of NICs. The introduction of ß-CDs led to the development of a distinctive feather-like structure within the NICs. The particle sizes were consistently measured around 200 nm, and both SAED and XRD patterns indicated the absence of crystalline NICs, providing supporting evidence. Through cytotoxicity and fluorescence-assisted cell-sorting analysis, the synthesized NICs showed no significant damage in the cell line of MCF-7. In comparison to QRC alone, the presence of high concentrations of NICs exhibited a lesser degree of toxicity in normal human lung fibroblast MRC-5 cells. Moreover, the individual and combined administration of both low and high concentrations of NICs effectively suppressed the growth of cancer cells (MDA-MB-231). The solubility improvement resulting from the formation of QRC-NICs with ß-CD enhanced the percentage of cell survival for MCF-7 cell types.

3.
Pharmaceutics ; 15(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242798

RESUMO

Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4 NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4 NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT). In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe, high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the future development of cancer PTT.

4.
J Pharm Biomed Anal ; 221: 115057, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36126612

RESUMO

A potentially active water-soluble anti-viral with lesser toxic material from the Oseltamivir (OTV) has been produced by the sonication method. The formed material has been further characterized by UV-visible, FT-IR, powder XRD, SEM, TGA/DTA, ROESY, XPS, AFM and etc., The results of DFT calculation have proven that inclusion complexes (ICs) are theoretically and energetically more advantageous models and structures have also been proposed based on the results. Analysis of drug release has been carried out at three pH levels, and it is revealed the analysis is most helpful at acidic pH levels for the ICs with S-CD over H-CD. Over OTV without CDs, OTV:S-CD-ICs exhibited a very less cytotoxic ability on cancer cell lines than ICs with M-CD. ICs enhanced the coronavirus inactivation nature of OTV. This study provides for the first time a full characterization of ICs of OTV with CDs and highlights the impact of complexation on pharmacological activity.


Assuntos
Coronavirus , Ciclodextrinas , beta-Ciclodextrinas , Ciclodextrinas/química , Oseltamivir/farmacologia , Pós , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos , Água/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA