Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 312(Pt 1): 137095, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334735

RESUMO

In present study, we describe the biodegradation of direct blue (DB) 297 and reactive blue (RB) 221 by immobilizing horseradish peroxidase (HRP) isolated from fresh leaves of Moringa Oliefera on iron oxide nanoparticles. Iron oxide nanoparticles were synthesized by co-precipitation method and showed a maximum immobilization efficiency of 87%. The surface topography of iron oxide nanoparticles was envisaged by scanning electron microscopy (SEM), results showed that magnetic nanoparticles (MNPs) were in the form of aggregates having size of 1 µm. Furthermore, immobilization was confirmed via functional group identification performed by Fourier transformed infrared spectroscopy (FTIR). Immobilization phenomena displaced the optimum temperature from 35 °C to 50 °C moreover, pH optima were altered from 5.0 to 7.0. Vmax and Km for free and immobilized HRP, were 303 U/mg and 1.66 mM and 312 U/mg and 1.94 mM, respectively. Enzymatic thermodynamic measurements (ΔH*, ΔS*, Ea, ΔG*) were also evaluated for immobilized HRP and its free counterpart. Optimum degradation of reactive blue (RB) and direct blue (DB) 297 with free and immobilized HRP was observed at pH 5 and at temperature 40 °C respectively. The removal efficiency of DB 297 and RB 221 with free HRP was 75% and 86% while with immobilized HRP was 81% and 92% respectively. Furthermore, biodegradation of reactive blue (RB) 221 and direct blue (DB) 297 with immobilized and free biocatalyst was also investigated by Fourier transform infrared spectroscopy (FTIR) by identification of groups involved in dye degradation. FTIR results confirmed the 100% degradation of dyes. Immobilized HRP retained significant catalytic activity after five consecutive cycles of dye degradation. In conclusion, Fe3O4 nanoparticles are promising and environmentally friendly media for enzyme immobilization. Moreover, immobilized HRP showed more thermal stability, pH stability and higher dye degradation efficiency as compared to free HRP. Furthermore, the immobilized HRP, economically more convenient and easily removable from reaction media. Owing to its thermal stability, ease of separation from reaction media and reusability, the magnetically separatable immobilized HRP can be exploited successfully for treatment of dye contaminated textile effluents.


Assuntos
Corantes , Enzimas Imobilizadas , Biocatálise , Corantes/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio , Nanopartículas Magnéticas de Óxido de Ferro , Temperatura , Termodinâmica
2.
Pharmaceutics ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297679

RESUMO

Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on different immunomodulation strategies for various delivery options and deliberate upon the outlook of such drug delivery platforms are conducted.

3.
Sci Rep ; 8(1): 11793, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087395

RESUMO

MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.


Assuntos
Expressão Gênica , Produtos do Gene gag/química , Produtos do Gene gag/isolamento & purificação , Vírus dos Macacos de Mason-Pfizer/química , Produtos do Gene gag/biossíntese , Produtos do Gene gag/genética , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
4.
Chem Cent J ; 10: 80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028385

RESUMO

Glomerular filtration rate (GFR) is usually determined by estimation of iothalamate (IOT) clearance. We have developed and validated an accurate and robust method for the analysis of IOT in human plasma and urine. The mobile phase consisted of methanol and 50 mM sodium phosphate (10:90; v/v). Flow rate was 1.2 mL/min on a C18 reverse phase column, Synergi-hydro (250 × 4.6 mm) 4 µm 80 Å, with an ultraviolet detector set to 254 nm. Acetonitrile was used for the deproteination and extraction of IOT from human plasma and urine. Precision and accuracy were within 15% for IOT in both plasma and urine. The recoveries of IOT in urine and plasma ranged between 93.14% and 114.74 and 96.04-118.38%, respectively. The linear range for urine and plasma assays were 25-1500 and 1-150 µg/mL respectively. The lower limits of detection were 0.5 µg/mL for both urine and plasma, with no interference from plasma and urine matices. This method has been fully validated according to FDA guidelines and the new HPLC assay has been applied to a new formulation of IOT (Conray™ 43), to calculate GFR in healthy volunteers. The new method is simple, less expensive and it would be instrumental in future clinical and pharmacokinetic studies of iothalamate in kidney patients.

5.
Chem Cent J ; 10: 52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540412

RESUMO

BACKGROUND: A gas chromatography mass spectrometry (GCMS) method for the determination of diclofenac in human plasma has been developed and validated. RESULTS: This method utilizes hexane which is a relatively less toxic extraction solvent compared to heptane and benzene. In addition, phosphoric acid and acetone were added to the samples as deproteination agents, which increased the recovery of diclofenac. These revised processes allow clean extraction and near-quantitative recovery of analyte (approx. 89-95 %). Separation was achieved on a BP-1 column with helium as carrier gas. The molecular ion peaks of the indolinone derivatives of diclofenac ion (m/z 277) and the internal standard, 4-hydroxydiclofenac ion (m/z 439) were monitored by a mass-selective detector using selected ion monitoring (SIM) mode. The linear range for the newly developed and highly sensitive assay was between 0.25-50 ng/mL. The detection and lower quantifiable limits were 0.125 and 0.25 ng/mL, respectively. The inter-day and intra-day coefficients of variation for high, medium and low quality control concentrations were less than 9 %. The robustness and efficacy of this sensitive GCMS method was further demonstrated by using it for a pharmacokinetic study of an oral dosage form of diclofenac, 100 mg of modified-release capsules (Rhumalgan XL), in human plasma. CONCLUSIONS: This method is rapid, sensitive, specific, reproducible and robust, and offers improved sensitivity over previous methods. This method has considerable potential to be used for detailed pharmacokinetics, pharmacodynamics and bioequivalence studies of diclofenac in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA