Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 336: 117616, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934665

RESUMO

A direct contact bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) based on inhibition of gas production was deployed to assess the toxicity of naturally contaminated field soils and soils artificially contaminated with heavy metals. Test procedure producing optimal conditions responsible for maximum gas production was 0.5 mL test culture, 1 g soil sample, 80 RPM, and 48 h reaction time. Similarly, the concentrations which generated a 50% reduction in gas production by TUDB for the tested heavy metals were 3.01 mg/kg Cr6+; 15.30 mg/kg Ni2+;15.50 mg/kg Cu2+;16.60 mg/kg Ag+; 20.60 mg/kg As3+; 32.80 mg/kg Hg2+; 54.70 mg/kg Cd2+; and 74.0 mg/kg Pb2+. Because soil toxicity is usually influenced by various physicochemical characteristics, ten reference soils were used to determine the toxicity threshold for evaluating the toxicity of naturally contaminated field soils. All eight contaminated soils were toxic to the TUDB bioassay because their levels of inhibition ranged between 72% and 100% and exceeded the determined toxicity threshold of 10%. Compared to other direct contact assays, the newly developed assay TUDB proved to be very robust, producing highly sensitive data while the different soil physicochemical properties exerted minimal influence on the gas production activity of TUDB. Additionally, the simplicity of the developed methodology coupled with the elimination of pretreatment procedures such as elutriation, and ability to perform generate sensitive data in turbid and highly colored samples makes it, cost-effective, and easily adaptable for the assessment of heavy metal and field contaminated soils when compared with other conventional assays which require sophisticated instrumentation and prolonged testing procedures and times.


Assuntos
Metais Pesados , Poluentes do Solo , Tiossulfatos , Metais Pesados/química , Poluição Ambiental , Solo/química , Bactérias , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental/métodos
2.
Chemosphere ; 303(Pt 1): 134902, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35561773

RESUMO

This study reports for the first-time the possibility of deploying gas production by thiosulfate utilizing denitrifying bacteria (TUDB) as a proxy to evaluate water toxicity. The test relies on gas production by TUDB due to inhibited metabolic activity in the presence of toxicants. Gas production was measured using a bubble-type respirometer. Optimization studies indicated that 300 mg NO3--N/L, 0.5 mL acclimated culture, and 2100 mg S2O32-/L were the ideal conditions facilitating the necessary volume of gas production for sensitive data generation. Determined EC50 values of the selected heavy metals were: Cr6+, 0.51 mg/L; Ag+, 2.90 mg/L; Cu2+, 2.90 mg/L; Ni2+, 3.60 mg/L; As3+, 4.10 mg/L; Cd2+, 5.56 mg/L; Hg2+, 8.06 mg/L; and Pb2+, 19.3 mg/L. The advantages of this method include operational simplicity through the elimination of cumbersome preprocessing procedures which are used to eliminate interferences caused by turbidity when the toxicity of turbid samples is determined via spectrophotometry.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Bactérias , Bioensaio , Monitoramento Ambiental/métodos , Metais Pesados/análise , Metais Pesados/toxicidade , Tiossulfatos , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Chemosphere ; 286(Pt 1): 131599, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315084

RESUMO

In this study, 11 low/uncontaminated (including Lufa 2.2) and 9 contaminated field soils with varying geophysical and physicochemical characteristics were evaluated for toxicities based on oxygen consumption of sulfur-oxidizing bacteria (SOB). Oxygen consumption of the low/uncontaminated soils ranged between 7.9 mL and 9.5 mL, while contaminated soils ranged between 0.4 mL and 5.4 mL. Inherent test variability (CVi), variation due to soil natural properties (CVns) and minimal detectable difference (MDD) values ranged 1.2%-3.9%, 3.5%-16.9%, and 2.1%-4.3%, respectively. The toxicity threshold of 20% was established for soil toxicity based maximal tolerable inhibition (MTI). All the contaminated soils were found to be toxic and showed inhibition between 42% and 100% above the 20% threshold value. Increased proportions of clay and slit enhanced the of inhibitory effect of contaminants on SOB by reducing the oxygen consumption. Current study provides a suitable method for the rapid toxicity assessment of contaminated field soils with the advantages of ease of handling and rapidity without employing elutriates and sophisticated equipments and tools.


Assuntos
Poluentes do Solo , Solo , Bactérias , Bioensaio , Oxirredução , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Enxofre/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA