Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 268: 113580, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33189842

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous common pharmaceuticals, including anti-cancer, antiviral and antidiabetic drugs, are derived from traditional plant-derived medicines. With approximately 25,000 species of flora occurring in Australia that are adapted to the harsh environment, there is a plethora of novel compounds awaiting research in the context of their medicinal properties. Anecdotal accounts of plant-based medicines used by the Australian Aboriginal and Torres Strait Islander peoples clearly illustrates high therapeutic activity. AIM: This review aims to demonstrate the medicinal potentials of selected native Australian plants based on scientific data. Furthermore, it is anticipated that work presented here will contribute towards enhancing our knowledge of native plants from Australia, particularly in the prevention and potential treatment of disease types such as cancer, microbial and viral infections, and diabetes. This is not meant to be a comprehensive study, rather it is meant as an overview to stimulate future research in this field. METHODS: The EBSCOhost platform which included PubMed, SciFinder, Web of Knowledge, Scopus, and ScienceDirect databases were searched for papers using the keywords: medicinal plants, antioxidative, antimicrobial, antibacterial, anticancer, anti-tumor, antiviral or antidiabetic, as well as Australian, native, traditional and plants. The selection criteria for including studies were restricted to articles on plants used in traditional remedies which showed antioxidative potential and therapeutic properties such as anticancer, antimicrobial, antiviral and antidiabetic activity. RESULTS: Some plants identified in this review which showed high Total Phenolic Content (TPC) and antioxidative capacity, and hence prominent bioactivity, included Tasmannia lanceolata (Poir.) A.C. Sm., Terminalia ferdinandiana Exell, Eucalyptus species, Syzygium species, Backhousia citriodora F.Muell., Petalostigma species, Acacia species, Melaleuca alternifolia (Maiden & Betche) Cheel, Eremophila species, Prostanthera rotundifolia R.Br., Scaevola spinescens R. Br. and Pittosporum angustifolium Lodd. The majority of studies found polar compounds such as caffeic acid, coumaric acid, chlorogenic acid, quercetin, anthocyanins, hesperidin, kaempferol, catechin, ellagic acid and saponins to be the active components responsible for the therapeutic effects. Additionally, mid to non-polar volatile organic compounds such as meroterpenes (serrulatanes and nerol cinnamates), monoterpenes (1,8-cineole and myodesert-1-ene), sesquiterpenes, diterpenes and triterpenes, that are known only in Australian plants, have also shown therapeutic properties related to traditional medicine. CONCLUSION: Australian plants express a diverse range of previously undescribed metabolites that have not been given full in vitro assessment for human health potential. This review has included a limited number of plant species of ethnomedicinal significance; hundreds of plants remain in need of exploration and detailed study. Future more elaborate studies are therefore required to screen out and purify lead bioactive compounds against numerous other disease types. This will not only improve our knowledge on the phytochemistry of Australian native flora, but also provide a platform to understand their health-promoting and bioactive effects for pharmaceutical interventions, nutraceuticals, cosmetics, and as functional foods. Finally, plant-derived natural compounds (phytochemicals), as well as plant-based traditional remedies, are significant sources for latent and novel drugs against diseases. Extensive investigation of native medicinal plants may well hold the key to novel drug discoveries.


Assuntos
Antioxidantes/uso terapêutico , Etnofarmacologia/métodos , Medicina Tradicional/métodos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Plantas Medicinais , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Austrália/etnologia , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
2.
Ann Bot ; 96(1): 159-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15840638

RESUMO

BACKGROUND AND AIMS: Stackhousia tryonii, a rare nickel hyperaccumulating herb, is endemic to ultramafic (serpentine) soils of central Queensland, Australia. The effects of eight dormancy-relieving treatments on germination of stored seeds of Stackhousia tryonii were investigated under controlled light and temperature conditions. * METHODS: The treatments were: untreated (control i), leached and dehydrated (primed control ii), treating with gibberellic acid (150 and 300 microM), smoke extract (5 and 10 %, v/v) and potassium cyanide (40 and 80 mM). * KEY RESULTS: Freshly harvested seeds did not germinate. Germination percentage increased with time of storage for up to 18 months (38.3 %). Gibberellin, smoke extract and cyanide treatments did not significantly improve germination. Light did not affect seed germination and there was no interaction between dormancy-relieving treatments and light. A significant inhibition of germination occurred in seeds treated with 5 % (but not 10 %) aqueous smoke extract. Saturated fatty acids, predominantly tridecanoic (C13:0), constituted about 90 % of the total fatty acids in the oil of freshly harvested seeds. In contrast, there was increased accumulation (>75 %) of mono-unsaturated (oleic, c18:1) and poly-unsaturated (linoleic, c18:2; linolenic, c18:3) fatty acids in the oil of stored seeds. * CONCLUSIONS: Seeds of S. tryonii require an after-ripening period for germination.


Assuntos
Celastraceae/crescimento & desenvolvimento , Germinação/fisiologia , Níquel/metabolismo , Sementes/fisiologia , Celastraceae/metabolismo , Luz
3.
Funct Plant Biol ; 31(11): 1061-1074, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688974

RESUMO

Stackhousia tryonii Bailey is one of the three nickel hyperaccumulators reported from Australia. It is a rare, herbaceous plant that accumulates (Ni) both in leaf and stem tissues. Localisation of Ni in leaf and stem tissues of S. tryonii was studied using two micro-analytical techniques, energy dispersive X-ray spectrometry (EDXS) and micro-proton-induced X-ray emission spectrometry (micro-PIXE). Dimethylglyoxime complexation of Ni was also visualised by bright- and dark-field microscopy, but this technique was considered to create artefacts in the distribution of Ni. Energy dispersive X-ray spectrometric analysis indicated that guard cells possessed a lower Ni concentration than epidermal cells, and that epidermal cells and vascular tissue contained higher levels of Ni than mesophyll, as reported for other Ni hyperaccumulators. The highest Ni concentration was recorded (PIXE quantitative point analysis) in the epidermal cells and vascular tissue (5400 µg g-1 DW), approximately double that recorded in palisade cells (2500 µg g-1 DW). However, concentrations were variable within these tissues, explaining, in part, the similarity between average Ni concentrations of these tissues (as estimated by region selection mode). Stem tissues showed a similar distribution pattern as leaves, with relatively low Ni concentration in the pith (central) region. The majority of Ni (73-85% for leaves; 80-92% for stem) was extracted from freeze-dried sections by water extraction, suggesting that this metal is present in a highly soluble and mobile form in the leaf and stem tissues of S. tryonii.

4.
New Phytol ; 160(3): 479-488, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33873657

RESUMO

• Metal concentrations within reproductive tissues of metallophytes are rarely reported. Here, the spatial distribution of nickel (Ni) within the fruits (seeds) of the Ni hyperaccumulator Stackhousia tryonii was investigated. • Two microanalytical techniques, energy dispersive x-ray spectrometry (EDXS) and nuclear microprobe (micro-proton-induced x-ray emission spectrometry; micro-PIXE) were employed for qualitative and quantitative assessment, respectively, of localized Ni, within the fruits of S. tryonii. The results were compared with quantitative analysis made using inductively coupled plasma-optical emission spectrometry (ICP-OES). • Nickel analysis made using micro-PIXE was consistent with bulk (ICP-OES) analysis (at 1800 µg g-1 d. wt), however, a beam resolution of approx. 2 × 2 µm2 allowed tissue localization. Nickel was partitioned to the fruit wall (pericarp) (4433 µg g-1 ), while endospermic and cotyledonary tissues possessed little Ni (309 and 182 µg g-1 d. wt, respectively). • This distribution is consistent with the interpretation that principal pathway of Ni movement within the fruit is symplastic rather than apoplastic (as the filial generation lacks symplastic connection with the parent).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA