Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 68(15): 6241-50, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676848

RESUMO

Metastatic breast cancer may emerge from latent tumor cells that remain dormant at disseminated sites for many years. Identifying mechanisms regulating the switch from dormancy to proliferative metastatic growth has been elusive due to the lack of experimental models of tumor cell dormancy. We characterized the in vitro growth characteristics of cells that exhibit either dormant (D2.0R, MCF-7, and K7M2AS1.46) or proliferative (D2A1, MDA-MB-231, and K7M2) metastatic behavior in vivo. Although these cells proliferate readily in two-dimensional culture, we show that when grown in three-dimensional matrix, distinct growth properties of the cells were revealed that correlate to their dormant or proliferative behavior at metastatic sites in vivo. In three-dimensional culture, cells with dormant behavior in vivo remained cell cycle arrested with elevated nuclear expression of p16 and p27. The transition from quiescence to proliferation of D2A1 cells was dependent on fibronectin production and signaling through integrin beta1, leading to cytoskeletal reorganization with filamentous actin (F-actin) stress fiber formation. We show that phosphorylation of myosin light chain (MLC) by MLC kinase (MLCK) through integrin beta1 is required for actin stress fiber formation and proliferative growth. Inhibition of integrin beta1 or MLCK prevents transition from a quiescent to proliferative state in vitro. Inhibition of MLCK significantly reduces metastatic outgrowth in vivo. These studies show that the switch from dormancy to metastatic growth may be regulated, in part, through epigenetic signaling from the microenvironment, leading to changes in the cytoskeletal architecture of dormant cells. Targeting this process may provide therapeutic strategies for inhibition of the dormant-to-proliferative metastatic switch.


Assuntos
Citoesqueleto/metabolismo , Metástase Neoplásica , Animais , Sequência de Bases , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA , Ativação Enzimática , Fibronectinas/metabolismo , Imunofluorescência , Camundongos , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação
2.
Proc Natl Acad Sci U S A ; 104(21): 9012-7, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17517630

RESUMO

The three deleted in liver cancer genes (DLC1-3) encode Rho-GTPase-activating proteins (RhoGAPs) whose expression is frequently down-regulated or silenced in a variety of human malignancies. The RhoGAP activity is required for full DLC-dependent tumor suppressor activity. Here we report that DLC1 and DLC3 bind to human tensin1 and its chicken homolog. The binding has been mapped to the tensin Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains at the C terminus of tensin proteins. Distinct DLC1 sequences are required for SH2 and PTB binding. DCL binding to both domains is constitutive under basal conditions. The SH2 binding depends on a tyrosine in DCL1 (Y442) but is phosphotyrosine-independent, a highly unusual feature for SH2 binding. DLC1 competed with the binding of other proteins to the tensin C terminus, including beta 3-integrin binding to the PTB domain. Point mutation of a critical tyrosine residue (Y442F) in DLC1 rendered the protein deficient for binding the tensin SH2 domain and binding full-length tensin. The Y442F protein was diffusely cytoplasmic, in contrast to the localization of wild-type DLC1 to focal adhesions, but it retained the ability to reduce the intracellular levels of Rho-GTP. The Y442F mutant displayed markedly reduced biological activity, as did a mutant that was RhoGAP-deficient. The results suggest that DLC1 is a multifunctional protein whose biological activity depends on cooperation between its tensin binding and RhoGAP activities, although neither activity depends on the other.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Humanos , Integrinas/metabolismo , Camundongos , Mutação/genética , Proteínas Oncogênicas/genética , Fosfotirosina/metabolismo , Ligação Proteica , Tensinas , Proteínas Supressoras de Tumor/genética , Tirosina/genética , Tirosina/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA