Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 5(43)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924685

RESUMO

Immunoglobulin E (IgE) plays an important role in allergic diseases. Nevertheless, the source of IgE serological memory remains controversial. We reexamined the mechanism of serological memory in allergy using a dual reporter system to track IgE+ plasma cells in mice. Short-term allergen exposure resulted in the generation of IgE+ plasma cells that resided mainly in secondary lymphoid organs and produced IgE that was unable to degranulate mast cells. In contrast, chronic allergen exposure led to the generation of long-lived IgE+ plasma cells that were primarily derived from sequential class switching of IgG1, accumulated in the bone marrow, and produced IgE capable of inducing anaphylaxis. IgE+ plasma cells were found in the bone marrow of human allergic, but not nonallergic donors, and allergen-specific IgE produced by these cells was able to induce mast cell degranulation when transferred to mice. These data demonstrate that long-lived IgE+ bone marrow plasma cells arise during chronic allergen exposure and establish serological memory in both mice and humans.


Assuntos
Alérgenos/imunologia , Imunoglobulina E/sangue , Memória Imunológica , Plasmócitos/imunologia , Pyroglyphidae/imunologia , Anafilaxia/imunologia , Animais , Células da Medula Óssea/imunologia , Exposição Ambiental , Humanos , Mastócitos/imunologia , Camundongos
2.
Allergy ; 75(5): 1188-1204, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31838750

RESUMO

BACKGROUND: Dupilumab, a fully human monoclonal antibody that binds IL-4Rα and inhibits signaling of both IL-4 and IL-13, has shown efficacy across multiple diseases with underlying type 2 signatures and is approved for treatment of asthma, atopic dermatitis, and chronic sinusitis with nasal polyposis. We sought to provide a comprehensive analysis of the redundant and distinct roles of IL-4 and IL-13 in type 2 inflammation and report dupilumab mechanisms of action. METHODS: Using primary cell assays and a mouse model of house dust mite-induced asthma, we compared IL-4 vs IL-13 vs IL-4Rα blockers. RESULTS: Intranasal administration of either IL-4 or IL-13 confers an asthma-like phenotype in mice by inducing immune cell lung infiltration, including eosinophils, increasing cytokine/chemokine expression and mucus production, thus demonstrating redundant functions of these cytokines. We further teased out their respective contributions using human in vitro culture systems. Then, in a mouse asthma model by comparing in head-to-head studies, either IL-4 or IL-13 inhibition to dual IL-4/IL-13 inhibition, we demonstrate that blockade of both IL-4 and IL-13 is required to broadly block type 2 inflammation, which translates to protection from allergen-induced lung function impairment. Notably, only dual IL-4/IL-13 blockade prevented eosinophil infiltration into lung tissue without affecting circulating eosinophils, demonstrating that tissue, but not circulating eosinophils, contributes to disease pathology. CONCLUSIONS: Overall, these data support IL-4 and IL-13 as key drivers of type 2 inflammation and help provide insight into the therapeutic mechanism of dupilumab, a dual IL-4/IL-13 blocker, in multiple type 2 diseases.


Assuntos
Interleucina-13 , Animais , Anticorpos Monoclonais Humanizados , Inflamação , Interleucina-4 , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA