Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 19(1): 96, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30041657

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are typically expressed at low levels and are inherently highly variable. This is a fundamental challenge for differential expression (DE) analysis. In this study, the performance of 25 pipelines for testing DE in RNA-seq data is comprehensively evaluated, with a particular focus on lncRNAs and low-abundance mRNAs. Fifteen performance metrics are used to evaluate DE tools and normalization methods using simulations and analyses of six diverse RNA-seq datasets. RESULTS: Gene expression data are simulated using non-parametric procedures in such a way that realistic levels of expression and variability are preserved in the simulated data. Throughout the assessment, results for mRNA and lncRNA were tracked separately. All the pipelines exhibit inferior performance for lncRNAs compared to mRNAs across all simulated scenarios and benchmark RNA-seq datasets. The substandard performance of DE tools for lncRNAs applies also to low-abundance mRNAs. No single tool uniformly outperformed the others. Variability, number of samples, and fraction of DE genes markedly influenced DE tool performance. CONCLUSIONS: Overall, linear modeling with empirical Bayes moderation (limma) and a non-parametric approach (SAMSeq) showed good control of the false discovery rate and reasonable sensitivity. Of note, for achieving a sensitivity of at least 50%, more than 80 samples are required when studying expression levels in realistic settings such as in clinical cancer research. About half of the methods showed a substantial excess of false discoveries, making these methods unreliable for DE analysis and jeopardizing reproducible science. The detailed results of our study can be consulted through a user-friendly web application, giving guidance on selection of the optimal DE tool ( http://statapps.ugent.be/tools/AppDGE/ ).


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Colorretais/genética , Neuralgia/genética , Neuroblastoma/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Animais , Teorema de Bayes , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neuralgia/metabolismo , Neuralgia/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Ratos , Análise de Sequência de RNA/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA