Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2683: 69-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300767

RESUMO

The following protocol describes the generation of microglia cells from human-induced pluripotent stem cells (hiPSCs) using commercially available kits by StemCell Technologies. This protocol consists of three major steps: (1) Differentiation of hematopoietic precursor cells, (2) Microglia differentiation, and (3) Microglia maturation. Assays are described to characterize hematopoietic precursor cells and mature microglia.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Microglia , Células-Tronco Embrionárias , Células-Tronco Hematopoéticas , Diferenciação Celular
2.
J Extracell Biol ; 1(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36688929

RESUMO

JC polyomavirus (JCPyV) is a small, non-enveloped virus that persists in the kidney in about half the adult population. In severely immune-compromised individuals JCPyV causes the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) in the brain. JCPyV has been shown to infect cells by both direct and indirect mechanisms, the latter involving extracellular vesicle (EV) mediated infection. While direct mechanisms of infection are well studied indirect EV mediated mechanisms are poorly understood. Using a combination of chemical and genetic approaches we show that several overlapping intracellular pathways are responsible for the biogenesis of virus containing EV. Here we show that targeting neutral sphingomyelinase 2 (nSMase2) with the drug cambinol decreased the spread of JCPyV over several viral life cycles. Genetic depletion of nSMase2 by either shRNA or CRISPR/Cas9 reduced EV-mediated infection. Individual knockdown of seven ESCRT-related proteins including HGS, ALIX, TSG101, VPS25, VPS20, CHMP4A, and VPS4A did not significantly reduce JCPyV associated EV (JCPyV(+) EV) infectivity, whereas knockdown of the tetraspanins CD9 and CD81 or trafficking and/or secretory autophagy-related proteins RAB8A, RAB27A, and GRASP65 all significantly reduced the spread of JCPyV and decreased EV-mediated infection. These findings point to a role for exosomes and secretory autophagosomes in the biogenesis of JCPyV associated EVs with specific roles for nSMase2, CD9, CD81, RAB8A, RAB27A, and GRASP65 proteins.

3.
J Vis Exp ; (165)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226027

RESUMO

In Alzheimer's disease (AD) and other neurodegenerative disorders, oligodendroglial failure is a common early pathological feature, but how it contributes to disease development and progression, particularly in the gray matter of the brain, remains largely unknown. The dysfunction of oligodendrocyte lineage cells is hallmarked by deficiencies in myelination and impaired self-renewal of oligodendrocyte precursor cells (OPCs). These two defects are caused at least in part by the disruption of interactions between neuron and oligodendrocytes along the buildup of pathology. OPCs give rise to myelinating oligodendrocytes during CNS development. In the mature brain cortex, OPCs are the major proliferative cells (comprising ~5% of total brain cells) and control new myelin formation in a neural activity-dependent manner. Such neuron-to-oligodendrocyte communications are significantly understudied, especially in the context of neurodegenerative conditions such as AD, due to the lack of appropriate tools. In recent years, our group and others have made significant progress to improve currently available protocols to generate functional neurons and oligodendrocytes individually from human pluripotent stem cells. In this manuscript, we describe our optimized procedures, including the establishment of a co-culture system to model the neuron-oligodendrocyte connections. Our illustrative results suggest an unexpected contribution from OPCs/oligodendrocytes to the brain amyloidosis and synapse integrity and highlight the utility of this methodology for AD research. This reductionist approach is a powerful tool to dissect the specific hetero-cellular interactions out of the inherent complexity inside the brain. The protocols we describe here are expected to facilitate future studies on oligodendroglial defects in the pathogenesis of neurodegeneration.


Assuntos
Comunicação Celular , Técnicas de Cultura de Células/métodos , Neurônios/citologia , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Linhagem da Célula , Técnicas de Cocultura , Dimetil Sulfóxido/farmacologia , Células HEK293 , Humanos , Bainha de Mielina/fisiologia
4.
Viruses ; 12(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092168

RESUMO

Polyomaviruses are small, non-enveloped DNA tumor viruses that cause serious disease in immunosuppressed people, including progressive multifocal leukoencephalopathy (PML) in patients infected with JC polyomavirus, but the molecular events mediating polyomavirus entry are poorly understood. Through genetic knockdown approaches, we identified phosphoinositide 3'-kinase γ (PI3Kγ) and its regulatory subunit PIK3R5 as cellular proteins that facilitate infection of human SVG-A glial cells by JCPyV. PI3Kα appears less important for polyomavirus infection than PI3Kγ. CRISPR/Cas9-mediated knockout of PIK3R5 or PI3Kγ inhibited infection by authentic JCPyV and by JC pseudovirus. PI3Kγ knockout also inhibited infection by BK and Merkel Cell pseudoviruses, other pathogenic human polyomaviruses, and SV40, an important model polyomavirus. Reintroduction of the wild-type PI3Kγ gene into the PI3Kγ knock-out SVG-A cells rescued the JCPyV infection defect. Disruption of the PI3Kγ pathway did not block binding of JCPyV to cells or virus internalization, implying that PI3Kγ facilitates some intracellular step(s) of infection. These results imply that agents that inhibit PI3Kγ signaling may have a role in managing polyomavirus infections.


Assuntos
Vírus JC/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Polyomavirus , Polyomavirus/fisiologia , Internalização do Vírus , Linhagem Celular , Humanos , Leucoencefalopatia Multifocal Progressiva/virologia , Neuroglia/enzimologia , Neuroglia/virologia , Fosfatidilinositóis/metabolismo , Infecções por Polyomavirus/enzimologia , Infecções por Polyomavirus/virologia
5.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115878

RESUMO

BK polyomavirus (BKPyV) is a ubiquitous human pathogen, with over 80% of adults worldwide being persistently infected. BKPyV infection is usually asymptomatic in healthy people; however, it causes polyomavirus-associated nephropathy in renal transplant patients and hemorrhagic cystitis in bone marrow transplant patients. BKPyV has a circular, double-stranded DNA genome that is divided genetically into three parts: an early region, a late region, and a noncoding control region (NCCR). The NCCR contains the viral DNA replication origin and cis-acting elements regulating viral early and late gene expression. It was previously shown that a BKPyV microRNA (miRNA) expressed from the late strand regulates viral large-T-antigen expression and limits the replication capacity of archetype BKPyV. A major unanswered question in the field is how expression of the viral miRNA is regulated. Typically, miRNA is expressed from introns in cellular genes, but there is no intron readily apparent in BKPyV from which the miRNA could derive. Here, we provide evidence for primary RNA transcripts that circle the genome more than once and include the NCCR. We identified splice junctions resulting from splicing of primary transcripts circling the genome more than once, and Sanger sequencing of reverse transcription-PCR (RT-PCR) products indicates that there are viral transcripts that circle the genome up to four times. Our data suggest that the miRNA is expressed from an intron spliced out of these greater-than-genome-size primary transcripts.IMPORTANCE The BK polyomavirus (BKPyV) miRNA plays an important role in regulating viral large-T-antigen expression and limiting the replication of archetype BKPyV, suggesting that the miRNA regulates BKPyV persistence. However, how miRNA expression is regulated is poorly understood. Here, we present evidence that the miRNA is expressed from an intron that is generated by RNA polymerase II transcribing the circular viral genome more than once. We identified splice junctions that could be generated only from primary transcripts that contain tandemly repeated copies of the viral genome. The results indicate another way in which viruses optimize expression of their genes using limited coding capacity.


Assuntos
Vírus BK/genética , Regulação Viral da Expressão Gênica , MicroRNAs/genética , RNA Viral/genética , Genoma Viral/genética , Humanos , Íntrons/genética , MicroRNAs/metabolismo , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica
7.
Cell Rep ; 27(7): 1960-1966.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091436

RESUMO

JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML). The entry receptors for JCPyV belong to the 5-hydroxytryptamine 2 receptor (5-HT2R) family, but how individual members of the family function to facilitate infection is not known. We used proximity ligation assay (PLA) to determine that JCPyV interacts with each of the 5-HT2 receptors (5-HT2Rs) in a narrow window of time during entry. We used CRISPR-Cas9 to randomly introduce stop codons in the gene for each receptor and discovered that the second intracellular loop of each was necessary for infection. This loop contains a motif possibly involved in receptor internalization by ß-arrestin. Mutation of this motif and small interfering RNA (siRNA) knockdown of ß-arrestin recapitulated the results of our CRISPR-Cas9 screen, showing that this motif is critical. Our results have implications for the role these receptors play in virus infection and for their normal functioning as receptors for serotonin.


Assuntos
Vírus JC/genética , Receptores 5-HT2 de Serotonina/genética , Receptores 5-HT2 de Serotonina/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Internalização do Vírus , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus JC/patogenicidade , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
8.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967463

RESUMO

The endemic human JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy in immune-suppressed patients. The mechanisms of virus infection in vivo are not understood because the major target cells for virus in the brain do not express virus receptors and do not bind virus. We found that JCPyV associates with extracellular vesicles (EVs) and can infect target cells independently of virus receptors. Virus particles were found packaged inside extracellular vesicles and attached to the outer side of vesicles. Anti-JCPyV antisera reduced infection by purified virus but had no effect on infection by EV-associated virus. Treatment of cells with the receptor-destroying enzyme neuraminidase inhibited infection with purified virus but did not inhibit infection by EV-associated virus. Mutant pseudoviruses defective in sialic acid receptor binding could not transduce cells as purified pseudovirions but could do so when associated with EVs. This alternative mechanism of infection likely plays a critical role in the dissemination and spread of JCPyV both to and within the central nervous system.IMPORTANCE JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML), a severe and often fatal neurodegenerative disease in immunocompromised or immunomodulated patients. The mechanisms responsible for initiating infection in susceptible cells are not completely known. The major attachment receptor for the virus, lactoseries tetrasaccharide c (LSTc), is paradoxically not expressed on oligodendrocytes or astrocytes in human brain, and virus does not bind to these cells. Because these are the major cell types targeted by the virus in the brain, we hypothesized that alternative mechanisms of infection must be responsible. Here we provide evidence that JCPyV is packaged in extracellular vesicles from infected cells. Infection of target cells by vesicle-associated virus is not dependent on LSTc and is not neutralized by antisera directed against the virus. This is the first demonstration of a polyomavirus using extracellular vesicles as a means of transmission.


Assuntos
Vesículas Extracelulares/virologia , Vírus JC/fisiologia , Internalização do Vírus , Linhagem Celular , Humanos
9.
Biol Chem ; 398(8): 839-855, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28493815

RESUMO

JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.


Assuntos
Vírus JC , Animais , Genômica , Humanos , Vírus JC/genética , Vírus JC/metabolismo , Vírus JC/fisiologia , Infecções por Polyomavirus , Transcrição Gênica , Proteínas Virais/metabolismo , Fenômenos Fisiológicos Virais
10.
mBio ; 7(4)2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27381292

RESUMO

UNLABELLED: The JC and BK human polyomaviruses (JCPyV and BKPyV, respectively) establish lifelong persistent infections in the kidney. In immunosuppressed individuals, JCPyV causes progressive multifocal leukoencephalopathy (PML), a fatal neurodegenerative disease, and BKPyV causes polyomavirus-associated nephropathy (PVN). In this study, we compared JCPyV and BKPyV infections in primary human renal proximal tubule epithelial (HRPTE) cells. JCPyV established a persistent infection, but BKPyV killed the cells in 15 days. To identify the cellular factors responsible for controlling JCPyV infection and promoting viral persistence, we profiled the transcriptomes of JCPyV- and BKPyV-infected cells at several time points postinfection. We found that infection with both viruses induced interferon production but that interferon-stimulated genes (ISGs) were only activated in the JCPyV-infected cells. Phosphorylated STAT1 and IRF9, which are responsible for inducing ISGs, translocated to the nucleus of JCPyV-infected cells but did not in BKPyV-infected cells. In BKPyV-infected cells, two critical suppressors of cytokine signaling, SOCS3 and SOCS1, were induced. Infection with BKPyV but not JCPyV caused reorganization of PML bodies that are associated with inactivating antiviral responses. Blockade of the interferon receptor and neutralization of soluble interferon alpha (IFN-α) and IFN-ß partially alleviated the block to JCPyV infection, leading to enhanced infectivity. Our results show that a type I IFN response contributes to the establishment of persistent infection by JCPyV in HRPTE cells. IMPORTANCE: The human polyomaviruses JCPyV and BKPyV both establish lifelong persistent infection in the kidneys. In immunosuppressed patients, BKPyV causes significant pathology in the kidney, but JCPyV is only rarely associated with disease in this organ. The reasons behind this striking difference in kidney pathology are unknown. In this study, we show that infection of primary human renal tubule epithelial cells with JCPyV and BKPyV results in divergent innate immune responses that control JCPyV but fail to control BKPyV. This is the first study that directly compares JCPyV and BKPyV infection in vitro in the same cell type they naturally infect, and the significant differences that have been uncovered could in part explain the distinct disease outcomes.


Assuntos
Vírus BK/imunologia , Vírus BK/fisiologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Vírus JC/imunologia , Vírus JC/fisiologia , Núcleo Celular/química , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Transporte Proteico , Fator de Transcrição STAT1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Latência Viral
11.
J Virol ; 87(24): 13490-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089568

RESUMO

The human JC polyomavirus (JCPyV) causes the rapidly progressing demyelinating disease progressive multifocal leukoencephalopathy (PML). The disease occurs most often in individuals with AIDS but also occurs in individuals receiving immunomodulatory therapies for immune-related diseases such as multiple sclerosis. JCPyV infection of host cells requires the pentasaccharide lactoseries tetrasaccharide c (LSTc) and the serotonin receptor 5-hydroxytryptamine (5-HT) receptor 5-HT2AR. While LSTc is involved in the initial attachment of virus to cells via interactions with VP1, the mechanism by which 5-HT2AR contributes to infection is not clear. To further define the roles of serotonin receptors in infection, HEK293A cells, which are poorly permissive to JCPyV, were transfected with 14 different isoforms of serotonin receptor. Only 5-HT2 receptors were found to support infection by JCPyV. None of the other 11 isoforms of serotonin receptor supported JCPyV infection. Expression of 5-HT2 receptors did not increase binding of JCPyV to cells, but this was not unexpected, given that the cells uniformly expressed the major attachment receptor, LSTc. Infection of these cells remained sensitive to inhibition with soluble LSTc, confirming that LSTc recognition is required for JCPyV infection. Virus internalization into HEK293A cells was significantly and specifically enhanced when 5HT2 receptors were expressed. Taken together, these data confirm that the carbohydrate LSTc is the attachment receptor for JCPyV and that the type 2 serotonin receptors contribute to JCPyV infection by facilitating entry.


Assuntos
Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Internalização do Vírus , Células HEK293 , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/genética , Leucoencefalopatia Multifocal Progressiva/virologia , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2C de Serotonina/genética , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA