Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 48, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639722

RESUMO

N-glycosylation is implicated in cancers and aberrant N-glycosylation is recognized as a hallmark of cancer. Here, we mapped and compared the site-specific N-glycoproteomes of colon cancer HCT116 cells and isogenic non-tumorigenic DNMT1/3b double knockout (DKO1) cells using Fbs1-GYR N-glycopeptide enrichment technology and trapped ion mobility spectrometry. Many significant changes in site-specific N-glycosylation were revealed, providing a molecular basis for further elucidation of the role of N-glycosylation in protein function. HCT116 cells display hypersialylation especially in cell surface membrane proteins. Both HCT116 and DKO1 show an abundance of paucimannose and 80% of paucimannose-rich proteins are annotated to reside in exosomes. The most striking N-glycosylation alteration was the degree of mannose-6-phosphate (M6P) modification. N-glycoproteomic analyses revealed that HCT116 displays hyper-M6P modification, which was orthogonally validated by M6P immunodetection. Significant observed differences in N-glycosylation patterns of the major M6P receptor, CI-MPR in HCT116 and DKO1 may contribute to the hyper-M6P phenotype of HCT116 cells. This comparative site-specific N-glycoproteome analysis provides a pool of potential N-glycosylation-related cancer biomarkers, but also gives insights into the M6P pathway in cancer.


Assuntos
Manosefosfatos , Neoplasias , Humanos , Glicosilação , Manosefosfatos/química , Manosefosfatos/metabolismo , Neoplasias/genética
2.
J Ethnopharmacol ; 253: 112655, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32045681

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Species Cissus gongylodes has been used in the traditional medicine in South America and India for the treatment of urolithiasis, biliary and inflammatory problems without any scientific evidence. AIM OF THE STUDY: This work was developed to investigate for the first time the anti-inflammatory and anti-urolithiatic activities of leaf decoction of C. gongylodes. MATERIALS AND METHODS: Decoction was subjected to anti-inflammatory evaluation by the in vivo assay of ear oedema and quantification of the main mediators of inflammation PGE2 and LTB4, and the cytokine TNF-α. The decoction's anti-urolithiatic activity was determined by different in vitro assays to evaluate the inhibition and dissolution of the most prevalent types of kidney stones: calcium oxalate (CaOx) and struvite. Diffusion in gel technique and fresh urine of a patient with renal stone were used to investigate the inhibition and dissolution of CaOx, respectively, and the single diffusion gel growth technique was used to evaluate the inhibition and dissolution of struvite crystals. The decoction was chemically characterized by UHPLC-ESI-HRMS analysis. RESULTS: Decoction showed in vivo anti-inflammatory activity by potent decreasing the level of both the main mediators of inflammation and dose-dependent in vitro anti-urolithiatic action by inhibition and dissolution of both type of crystals, CaOx and struvite. CONCLUSIONS: Results obtained corroborate the reports of the traditional use of the decoction of Cissus gongylodes. Besides, it showed multi-target mechanisms actions, inhibition of the main inflammatory pathways, and inhibition/dissolution of the most prevalent types of crystals on urolithiasis. These actions make the decoction a promissory source to the development of new and more efficient drugs.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cissus , Edema/tratamento farmacológico , Cálculos Renais/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/química , Oxalato de Cálcio/química , Óleo de Cróton , Cristalização , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/metabolismo , Humanos , Cálculos Renais/química , Leucotrieno B4/metabolismo , Masculino , Camundongos , Extratos Vegetais/química , Folhas de Planta , Estruvita/química , Fator de Necrose Tumoral alfa/metabolismo
3.
Bioorg Med Chem Lett ; 26(5): 1485-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848109

RESUMO

The human tissue kallikreins (KLK1-KLK15) comprise a family of 15 serine peptidases detected in almost every tissue of the human body and that actively participate in many physiological and pathological events. Some kallikreins are involved in diseases for which no effective therapy is available, as for example, epithelial disorders, bacterial infections and in certain cancers metastatic processes. In recent years our group have made efforts to find inhibitors for all kallikreins, based on natural products and synthetic molecules, and all the inhibitors developed by our group presented a competitive mechanism of inhibition. Here we describe fukugetin, a natural product that presents a mixed-type mechanism of inhibition against KLK1 and KLK2. This type of inhibitor is gaining importance today, especially for the development of exosite-type inhibitors, which present potential to selectively inhibit the enzyme activity only against specific substrate.


Assuntos
Biflavonoides/farmacologia , Produtos Biológicos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Calicreínas Teciduais/antagonistas & inibidores , Biflavonoides/química , Biflavonoides/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Garcinia/química , Humanos , Modelos Moleculares , Conformação Molecular , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/isolamento & purificação , Relação Estrutura-Atividade , Calicreínas Teciduais/metabolismo
4.
Mol Biochem Parasitol ; 187(2): 111-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23354130

RESUMO

We studied the substrate specificity requirements of recombinant cysteine peptidases from Plasmodium falciparum, falcipain-2 (FP-2) and falcipain-3 (FP-3), using fluorescence resonance energy transfer (FRET) peptides as substrates. Systematic modifications were introduced in the lead sequence Abz-KLRSSKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp=N-[2,4-dinitrophenyl]ethylenediamine) resulting in five series assayed to map S3-S'2 subsite specificity. Despite high sequence identity and structural similarity between FP-2 and FP-3, noteworthy differences in substrate specificity were observed. The S1 subsite of FP-2 preferentially accommodates peptides containing the positively charged residue Arg in P1, while FP-3 has a clear preference for the hydrophobic residue Leu in this position. The S2 subsite of FP-2 and FP-3 presents a strict specificity for hydrophobic residues, with Leu being the residue preferred by both enzymes. FP-2 did not show preference for the residues present at P3, while FP-3 hydrolysed the peptide Abz-ALRSSRQ-EDDnp, containing Ala at P3, with the highest catalytic efficiency of all series studied. FP-2 has high susceptibility for substrates containing hydrophobic residues in P'1, while FP-3 accommodates well peptides containing Arg in this position. The S'2 subsite of both enzymes demonstrated broad specificity. In addition, radioimmunoassay experiments indicated that kinins can be generated by FP-2 and FP-3 proteolysis of high molecular weight kininogen (HK). Both enzymes excised Met-Lys-bradykinin, Lys-bradykinin and bradykinin from the fluorogenic peptide Abz-MISLMKRPPGFSPFRSSRI-NH2, which corresponds to the Met(375) to Ile(393) sequence of HK. The capability of FP-2 and FP-3 to release kinins suggests the involvement of these enzymes in the modulation of malaria pathophysiology.


Assuntos
Cisteína Endopeptidases/metabolismo , Calicreínas/metabolismo , Plasmodium falciparum/enzimologia , Cininogênios/metabolismo , Cininas/metabolismo , Especificidade por Substrato
5.
J Bone Miner Res ; 28(3): 688-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22991293

RESUMO

X-linked hypophosphatemia (XLH/HYP)-with renal phosphate wasting, hypophosphatemia, osteomalacia, and tooth abscesses-is caused by mutations in the zinc-metallopeptidase PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome). PHEX is highly expressed by mineralized tissue cells. Inactivating mutations in PHEX lead to distal renal effects (implying accumulation of a secreted, circulating phosphaturic factor) and accumulation in bone and teeth of mineralization-inhibiting, acidic serine- and aspartate-rich motif (ASARM)-containing peptides, which are proteolytically derived from the mineral-binding matrix proteins of the SIBLING family (small, integrin-binding ligand N-linked glycoproteins). Although the latter observation suggests a local, direct matrix effect for PHEX, its physiologically relevant substrate protein(s) have not been identified. Here, we investigated two SIBLING proteins containing the ASARM motif-osteopontin (OPN) and bone sialoprotein (BSP)-as potential substrates for PHEX. Using cleavage assays, gel electrophoresis, and mass spectrometry, we report that OPN is a full-length protein substrate for PHEX. Degradation of OPN was essentially complete, including hydrolysis of the ASARM motif, resulting in only very small residual fragments. Western blotting of Hyp (the murine homolog of human XLH) mouse bone extracts having no PHEX activity clearly showed accumulation of an ∼35 kDa OPN fragment that was not present in wild-type mouse bone. Immunohistochemistry and immunogold labeling (electron microscopy) for OPN in Hyp bone likewise showed an accumulation of OPN and/or its fragments compared with normal wild-type bone. Incubation of Hyp mouse bone extracts with PHEX resulted in the complete degradation of these fragments. In conclusion, these results identify full-length OPN and its fragments as novel, physiologically relevant substrates for PHEX, suggesting that accumulation of mineralization-inhibiting OPN fragments may contribute to the mineralization defect seen in the osteomalacic bone characteristic of XLH/HYP.


Assuntos
Osso e Ossos/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X , Osteopontina/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Osteopontina/química , Proteólise
6.
J Endocrinol ; 214(2): 217-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653842

RESUMO

Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.


Assuntos
Catepsinas/metabolismo , Leptina/antagonistas & inibidores , Leptina/metabolismo , Processamento de Proteína Pós-Traducional , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Sequência de Aminoácidos , Indutores da Angiogênese/farmacologia , Animais , Domínio Catalítico , Catepsinas/fisiologia , Células Cultivadas , Cisteína Proteases/metabolismo , Cisteína Proteases/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Leptina/química , Leptina/farmacologia , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
7.
Malar J ; 11: 156, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22564457

RESUMO

BACKGROUND: The malaria burden remains a major public health concern, especially in sub-Saharan Africa. The complex biology of Plasmodium, the apicomplexan parasite responsible for this disease, challenges efforts to develop new strategies to control the disease. Proteolysis is a fundamental process in the metabolism of malaria parasites, but roles for proteases in generating vasoactive peptides have not previously been explored. RESULTS: In the present work, it was demonstrated by mass spectrometry analysis that Plasmodium parasites (Plasmodium chabaudi and Plasmodium falciparum) internalize and process plasma kininogen, thereby releasing vasoactive kinins (Lys-BK, BK and des-Arg9-BK) that may mediate haemodynamic alterations during acute malaria. In addition, it was demonstrated that the P. falciparum cysteine proteases falcipain-2 and falcipain-3 generated kinins after incubation with human kininogen, suggesting that these enzymes have an important role in this process. The biologic activity of peptides released by Plasmodium parasites was observed by measuring ileum contraction and activation of kinin receptors (B1 and B2) in HUVEC cells; the peptides elicited an increase in intracellular calcium, measured by Fluo-3 AM fluorescence. This effect was suppressed by the specific receptor antagonists Des-Arg9[Leu8]-BK and HOE-140. CONCLUSIONS: In previously undescribed means of modulating host physiology, it was demonstrated that malaria parasites can generate active kinins by proteolysis of plasma kininogen.


Assuntos
Cisteína Endopeptidases/metabolismo , Cininogênios/metabolismo , Cininas/metabolismo , Plasmodium chabaudi/enzimologia , Plasmodium falciparum/enzimologia , Animais , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cobaias , Humanos , Íleo/efeitos dos fármacos , Espectrometria de Massas , Contração Muscular/efeitos dos fármacos , Plasmodium chabaudi/metabolismo , Plasmodium falciparum/metabolismo , Proteólise
8.
Mol Biochem Parasitol ; 184(2): 82-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569587

RESUMO

In this study we investigated the peptidase activity in Leishmania (L.) amazonensis live amastigote by confocal microscopy using peptidyl-MCA as substrates, the hydrolysis of which releases the MCA fluorophore inside the cells. Cell pre-treatment with peptidase inhibitors indicated the presence of cysteine and serine peptidases. It was noteworthy that Leishmania amastigotes incorporate only substrates (Z-FR-MCA, Z-RR-MCA) or inhibitors (E64, TLCK) containing positively charged groups. The peptidase activities in the supernatants of amastigotes and promastigotes lysates were also evaluated with the same peptidyl-MCA substrates and inhibitors in the pH range 4.5-9.0. The effects of temperature and different salts were also included in this study. The hydrolytic activities of supernatants on Z-FR-MCA clearly indicate the presence of different cysteine peptidases that adapted to work in different environment conditions. Intact Leishmania cells incorporated Z-RR-MCA, the hydrolysis of which was inhibited only by TLCK indicating the presence of at least one serine peptidase. The pH profile of Z-RR-MCA hydrolysis by amastigotes and promastigotes lysate supernatants, and the hydrolysis time course of the FRET peptide Abz-AGRRRAQ-EDDnp at RA bond, followed by removal of the two C-termini R to yield Abz-AGR-OH that is a unique characteristic of oligopeptidase B, indicate its presence in the parasite.


Assuntos
Leishmania/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Citratos/química , Cricetinae , Inibidores de Cisteína Proteinase/farmacologia , Concentração de Íons de Hidrogênio , Leishmania/citologia , Leucina/análogos & derivados , Leucina/farmacologia , Mesocricetus , Oligopeptídeos/química , Pepstatinas/farmacologia , Peptídeo Hidrolases/química , Proteólise , Proteínas de Protozoários/química , Salinidade , Inibidores de Serina Proteinase/farmacologia , Citrato de Sódio , Sulfatos/química , Temperatura , Tosilina Clorometil Cetona/farmacologia
9.
Biochimie ; 94(3): 711-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22085639

RESUMO

Foot and mouth disease virus expresses its genetic information as a single polyprotein that is translated from the single-stranded RNA genome. Proteinases contained within the polyprotein then generate the mature viral proteins. The leader protease (Lb(pro)) performs the initial cleavage by freeing itself from the growing polypeptide chain; subsequently, Lb(pro) cleaves the two homologues of the host cell protein eukaryotic initiation factor 4G (eIF4G). We showed that Lb(pro) possesses specific binding sites at the non prime side from S(1) down to S(7) [Santos et al. (2009) Biochemistry, 48, 7948-7958]. Here, we demonstrate that Lb(pro) has high prime side specificity at least down to the S'(5) site. Lb(pro) is thus not only one of the smallest papain-like cysteine peptidases but also one of the most specific. It can still however cleave between both K↓G and G↓R pairs. We further determined the two-step irreversible inhibition (E + I ↔ EI→ E - I) kinetic parameters of two known irreversible epoxide-based inhibitors of cysteine proteinases, E64 and CA074 on Lb(pro) that show for the reversible step (E + I ↔ EI) K(i) = 3.4 µM and 11.6 µM, and for the irreversible step (EI→E-I) k(4) = 0.16 and 0.06 min(-1), respectively. Knowledge of the Lb(pro) specificity led us to extend E64 by addition of the dipeptide R-P. This compound, termed E64-R-P-NH(2), irreversibly inhibited Lb(pro) with a K(i) = 30 nM and k(4) = 0.01 min(-1) and can serve as the basis for design of specific inhibitors of FMDV replication.


Assuntos
Cisteína Proteases/metabolismo , Febre Aftosa/enzimologia , Inibidores de Proteases/síntese química , Animais , Catepsinas/metabolismo , Cisteína Proteases/química , Fator de Iniciação Eucariótico 4G/metabolismo , Inibidores de Proteases/química
10.
Protein J ; 30(6): 404-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21748377

RESUMO

Serine peptidase inhibitors (serpins) form a superfamily of proteins covering abroad spectrum of different biological functions. Here we describe the inhibitory characterization of leviserpin, the first serpin from the sugar cane weevil Sphenophorus levis. Leviserpin was able to inhibit bovine trypsin by the formation of the covalent complex serpin-peptidase, demonstrated by SDS-PAGE and mass spectroscopy analysis. We also have determined the cleavage site at the reactive center loop, by the analysis of the polypeptides released from de C-terminus of leviserpin. Moreover we investigated the mRNA expression of leviserpin in different stages of S. levis development. Thus the specificity of leviserpin, in addition with its mRNA coding being transcribed through all lifecycle of the insect, can suggest a possible role in defense mechanism by regulating the action of prophenoloxidase (proPO) activating enzyme.


Assuntos
Inibidores de Serina Proteinase/metabolismo , Serpinas/metabolismo , Gorgulhos/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Simulação por Computador , Eletroforese em Gel de Poliacrilamida , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Saccharum , Alinhamento de Sequência , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/isolamento & purificação , Serpinas/química , Serpinas/genética , Serpinas/isolamento & purificação , Tripsina/metabolismo , Gorgulhos/genética , Gorgulhos/crescimento & desenvolvimento
11.
Biol Chem ; 391(9): 1105-12, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20635860

RESUMO

Here we report a detailed analysis of magnesium (Mg²+) ion effects on furin hydrolysis of fluorescent resonance energy transfer decapeptide substrates derived from canonical R-X-K/R-R furin cleavage motifs within certain viral envelope glycoproteins and eukaryotic proproteins. Using virus-derived sequences a selective activation of furin by Mg²+) ions was observed as a result of cooperativity between furin subsites. Furin hydrolysis of the peptides Abz-SRRHKR↓FAGV-Q-EDDnp (from measles virus fusion protein F0 and Abz-RERRRKKR↓GLFG-Q-EDDnp (from Asian avian influenza A, H5N1) was activated between 60- and 80-fold by MgCl2. It appears that virus envelope glycoprotein mutations have been selected to increase their susceptibility to furin within cells, a location where Mg²+ is present in adequate concentrations for activation. Both the pH profile of furin and its intrinsic fluorescence were modified by Mg²+ ions, which bind to furin with a K(d) value of 1.1 mM.


Assuntos
Furina/metabolismo , Magnésio/farmacologia , Proteínas do Envelope Viral/metabolismo , Biocatálise/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Hidrólise/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Íons/química , Íons/farmacologia , Magnésio/química , Oligopeptídeos/química , Pró-Proteína Convertases/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Proteínas do Envelope Viral/genética
12.
Arch Biochem Biophys ; 498(1): 74-82, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20371359

RESUMO

We report the enzymatic properties and substrate specificity of human recombinant KLK3 in the presence of glycosaminoglycans (GAGs) and sodium citrate. This salt is highly concentrated in prostate and in its presence KLK3 had a similar hydrolytic efficiency as chymotrypsin. In contrast to the latter peptidase, KLK3 activated by sodium citrate efficiently hydrolyzed substrates containing R, H and P at the P1 position. Activated KLK3 also cleaved peptides derived from the bradykinin domain of human kininogen at the same sites as human kallikrein KLK1, but presented low kininogenase activity. Angiotensin I has several sites for hydrolysis by KLK3; however, it was cleaved only at the Y-I bond (DRVY downward arrowIHPFHL). Sodium citrate modulated KLK3 conformation as observed by alterations to the intrinsic fluorescence of phenylalanines and tryptophans. Activated KLK3 was reversibly inhibited by Z-Pro-Prolinal and competitively inhibited by ortho-phenantroline. Together, these are noteworthy observations for the future design of specific non-peptide inhibitors of KLK3 and to find natural substrates.


Assuntos
Citratos/farmacologia , Glicosaminoglicanos/farmacologia , Calicreínas/antagonistas & inibidores , Calicreínas/metabolismo , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Angiotensinas/metabolismo , Cloretos/química , Cloretos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Calicreínas/química , Cininogênio de Baixo Peso Molecular/metabolismo , Dados de Sequência Molecular , Antígeno Prostático Específico , Sais/química , Sais/farmacologia , Citrato de Sódio , Especificidade por Substrato
13.
Biol Chem ; 391(5): 561-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20302511

RESUMO

Plasminogen is a glycoprotein implicated in angiogenesis and fibrin clot degradation associated with the release of angiostatin and plasmin activation, respectively. We have recently reported that cathepsin V, but not cathepsins L, B, and K, can release angiostatin-like fragments from plasminogen. Here, we extended the investigation to cathepsin S which has been implicated in angiogenesis and tumor cell proliferation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasminogen hydrolysis by cathepsin S revealed generation of two fragments (60 and 38 kDa). Amino-terminal sequencing indicated that cleavage occurs at the Leu469-Leu470 peptide bond. In contrast to cathepsin V, which possesses antiangiogenic activity, cathepsin S plasminogen cleavage products were not capable of inhibiting angiogenesis on endothelial cells. Moreover, we explored the different selectivities presented by cathepsins V and S towards plasminogen and synthesized fluorescence resonance energy transfer peptides encompassing the hydrolyzed peptide bonds by both enzymes. The peptide Abz-VLFEKKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp= N-[2,4-dinitrophenyl]ethylenediamine), hydrolyzed by cath-epsin V at the Phe-Glu bond, is a selective substrate for the enzyme when compared with cathepsins B, L, and S, whereas Abz-VLFEKKVYLQ-EDDnp is an efficient cathepsin L inhibitor. The demonstrated importance of the S(3)'-P(3)' interaction indicates the significance of the extended subsites for enzyme specificity and affinity.


Assuntos
Catepsina L/antagonistas & inibidores , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Plasminogênio/metabolismo , Sequência de Aminoácidos , Humanos , Hidrólise , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
14.
Eur J Med Chem ; 44(3): 1230-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18995931

RESUMO

We have investigated the in vitro inhibition of papain, trypsin, and cathepsins B and G by five benzophenone-type compounds, three natural ones isolated from Garcinia brasiliensis and two synthetic derivatives. The activities of pentaprenylated trihydroxy-substituted benzophenone guttiferone A (1) on all assayed enzymes were approximately 2-69 folds higher than that manifested by mono-hydroxylated tetraprenylated and triprenylated compounds epiclusianone (2) and garciniaphenone (3), respectively, the other natural benzophenones that also inhibited significantly the four enzymes. Differently, the synthetic derivatives 2,2',4-trihydroxybenzophenone (4) and diphenylmethanone (5) have inhibited weakly the studied proteases. Furthermore, compound 1 has bonded preferentially to cathepsin G, once its IC(50) value (2.7+/-0.1 microM) on such peptidase is quite similar to that of the classical inhibitor of serine proteases, chymostatin (2.1+/-0.1 microM). Interesting structure-activity relationships (SARs) were confirmed by flexible docking simulations, likewise the potential usefulness of natural compound 1 as antitumoral drug is strengthened by our results concerning the antiproteolytic activity.


Assuntos
Benzofenonas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Serina Proteinase/farmacologia , Benzofenonas/química , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Cinética , Modelos Moleculares , Estrutura Molecular , Inibidores de Serina Proteinase/química , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA