Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574619

RESUMO

Age-associated osteosarcopenia is an unresolved syndrome characterized by the concomitant loss of bone (osteopenia) and skeletal muscle (sarcopenia) tissues increasing falls, immobility, morbidity, and mortality. Unbalanced resorption of bone in the remodeling process and excessive protein breakdown, especially fast type II myosin heavy chain (MyHC-II) isoform and myofiber metabolic shift, are the leading causes of bone and muscle deterioration in the elderly, respectively. Equisetum arvense (EQ) is a plant traditionally recommended for many pathological conditions due to its anti-inflammatory properties. Thus, considering that a chronic low-grade inflammatory state predisposes to both osteoporosis and sarcopenia, we tested a standardized hydroalcoholic extract of EQ in in vitro models of muscle atrophy [C2C12 myotubes treated with proinflammatory cytokines (TNFα/IFNγ), excess glucocorticoids (dexamethasone), or the osteokine, receptor activator of nuclear factor kappa-B ligand (RANKL)] and osteoclastogenesis (RAW 264.7 cells treated with RANKL). We found that EQ counteracted myotube atrophy, blunting the activity of several pathways depending on the applied stimulus, and reduced osteoclast formation and activity. By in silico target fishing, IKKB-dependent nuclear factor kappa-B (NF-κB) inhibition emerges as a potential common mechanism underlying EQ's anti-atrophic effects. Consumption of EQ (500 mg/kg/day) by pre-geriatric C57BL/6 mice for 3 months translated into: i) maintenance of muscle mass and performance; ii) restrained myofiber oxidative shift; iii) slowed down age-related modifications in osteoporotic bone, significantly preserving trabecular connectivity density; iv) reduced muscle- and spleen-related inflammation. EQ can preserve muscle functionality and bone remodeling during aging, potentially valuable as a natural treatment for osteosarcopenia.


Assuntos
Equisetum , Extratos Vegetais , Sarcopenia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Camundongos , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia , Células RAW 264.7 , Equisetum/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK/metabolismo , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513905

RESUMO

AKT (also known as PKB) is a serine/threonine kinase that plays a pivotal regulatory role in the PI3K/AKT/mTOR signaling pathway. Dysregulation of AKT activity, especially its hyperactivation, is closely associated with the development of various human cancers and resistance to chemotherapy. Over the years, a wide array of AKT inhibitors has been discovered through experimental and computational approaches. In this regard, herein we present a comprehensive overview of AKT inhibitors identified using computer-assisted drug design methodologies (including docking-based and pharmacophore-based virtual screening, machine learning, and quantitative structure-activity relationships) and successfully validated small molecules endowed with anticancer activity. Thus, this review provides valuable insights to support scientists focused on AKT inhibition for cancer treatment and suggests untapped directions for future computer-aided drug discovery efforts.

3.
J Med Chem ; 66(10): 6498-6522, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134182

RESUMO

Synthetic lethality (SL) is an innovative strategy in targeted anticancer therapy that exploits tumor genetic vulnerabilities. This topic has come to the forefront in recent years, as witnessed by the increased number of publications since 2007. The first proof of concept for the effectiveness of SL was provided by the approval of poly(ADP-ribose)polymerase inhibitors, which exploit a SL interaction in BRCA-deficient cells, although their use is limited by resistance. Searching for additional SL interactions involving BRCA mutations, the DNA polymerase theta (POLθ) emerged as an exciting target. This review summarizes, for the first time, the POLθ polymerase and helicase inhibitors reported to date. Compounds are described focusing on chemical structure and biological activity. With the aim to enable further drug discovery efforts in interrogating POLθ as a target, we propose a plausible pharmacophore model for POLθ-pol inhibitors and provide a structural analysis of the known POLθ ligand binding sites.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Helicases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Neoplasias/tratamento farmacológico , DNA Polimerase teta
4.
Pharmaceutics ; 14(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365115

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is globally poor. In more than 60% of AML patients, the PI3K/AKTs/mTOR signaling pathway is aberrantly activated because of oncogenic driver alterations and further enhanced by chemotherapy as a mechanism of drug resistance. Against this backdrop, very recently we have started a multidisciplinary research project focused on AKT1 as a pharmacological target to identify novel anti-AML agents. Indeed, the serendipitous finding of the in-house compound T187 as an AKT1 inhibitor has paved the way to the rational identification of new active small molecules, among which T126 has emerged as the most interesting compound with IC50 = 1.99 ± 0.11 µM, ligand efficiency of 0.35, and a clear effect at low micromolar concentrations on growth inhibition and induction of apoptosis in AML cells. The collected results together with preliminary SAR data strongly indicate that the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one derivative T126 is worthy of future biological experiments and medicinal chemistry efforts aimed at developing a novel chemical class of AKT1 inhibitors as anti-AML agents.

5.
J Neurochem ; 152(1): 136-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264722

RESUMO

The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.


Assuntos
Membrana Celular/química , Proteínas PrPC/análise , Príons/antagonistas & inibidores , Animais , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes , Expressão Gênica , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HEK293 , Harmalina/análogos & derivados , Harmalina/farmacologia , Hematoxilina/análogos & derivados , Hematoxilina/farmacologia , Humanos , Camundongos , Neuroblastoma , Proteínas PrPC/genética , Príons/biossíntese , Príons/toxicidade , Quinacrina/farmacologia , Tacrolimo/farmacologia
6.
ACS Infect Dis ; 5(6): 982-1000, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30907573

RESUMO

Nontuberculous mycobacteria (NTM) are ubiquitous microbes belonging to the Mycobacterium genus. Among all NTM pathogens, M. avium is one of the most frequent agents causing pulmonary disease, especially in immunocompromised individuals and cystic fibrosis patients. Recently, we reported the first ad hoc designed M. avium efflux pump inhibitor (EPI; 1b) able to strongly boost clarithromycin (CLA) MIC against different M. avium strains. Since the 3-phenylquinolone derivative 1b suffered from toxicity issues toward human macrophages, herein we report a two-pronged medicinal chemistry workflow for identifying new potent and safe NTM EPIs. Initially, we followed a computational approach exploiting our pharmacophore models to screen FDA approved drugs and in-house compounds to identify "ready-to-use" NTM EPIs and/or new scaffolds to be optimized in terms of EPI activity. Although nicardipine 2 was identified as a new NTM EPI, all identified molecules still suffered from toxicity issues. Therefore, based on the promising NTM EPI activity of 1b, we undertook the design, synthesis, and biological evaluation of new 3-phenylquinolones differently functionalized at the C6/C7 as well as N1 positions. Among the 27 synthesized 3-phenylquinolone analogues, compounds 11b, 12b, and 16a exerted excellent NTM EPI activity at concentrations below their CC50 on human cells, with derivative 16a being the most promising compound. Interestingly, 16a also showed good activity in M. avium-infected macrophages both alone as well as in combination with CLA. The antimycobacterial activity observed for 16a only when tested in the ex vivo model suggests a high therapeutic potential of EPIs against M. avium, which seems to need functional efflux pumps to establish intracellular infections.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Antibacterianos/farmacologia , Benzoquinonas/química , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium/efeitos dos fármacos , Simulação por Computador , Sinergismo Farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium avium/efeitos dos fármacos
7.
ChemMedChem ; 13(1): 7-14, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29210532

RESUMO

Herein we review all the currently available ATP-site and non-ATP-site ligands bound to p38α mitogen-activated protein kinase (MAPK) available in the RCSB Protein Data Bank (PDB). The co-crystallized inhibitors have been classified into different families according to their experimental binding mode and chemical structure, and the ligand-protein interactions are discussed using the most representative compounds. This systematic structural analysis could provide some take-home lessons for drug discovery programs aimed at the rational identification and optimization of new p38α MAPK inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Proteína Quinase 14 Ativada por Mitógeno/química , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína
8.
Chem Biol Drug Des ; 86(4): 531-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25589097

RESUMO

The identification, synthesis, biological activity, and binding mode prediction of a series of pyrazolobenzothiazines as novel p38α MAPK inhibitors are reported. Some of these compounds showed interesting activity in both p38α MAPK and TNF-α release assays. Derivative 6 emerged as the most interesting compound with IC50 (p38α) = 0.457 µm, IC50 (TNF-α) = 0.5 µm and a promising kinase selectivity profile. The obtained results strongly indicate the pyrazolobenzothiazine core as a new p38α inhibitor chemotype worthy of future chemical optimization efforts directed toward identifying a new generation of anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Benzotiadiazinas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Benzotiadiazinas/síntese química , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Células Cultivadas , Humanos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA