Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(6): e202316478, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100251

RESUMO

[Fe]-hydrogenase harbors the iron-guanylylpyridinol (FeGP) cofactor, in which the Fe(II) complex contains acyl-carbon, pyridinol-nitrogen, cysteine-thiolate and two CO as ligands. Irradiation with UV-A/blue light decomposes the FeGP cofactor to a 6-carboxymethyl-4-guanylyl-2-pyridone (GP) and other components. Previous in vitro biosynthesis experiments indicated that the acyl- and CO-ligands in the FeGP cofactor can scramble, but whether scrambling occurred during biosynthesis or photolysis was unclear. Here, we demonstrate that the [18 O1 -carboxy]-group of GP is incorporated into the FeGP cofactor by in vitro biosynthesis. MS/MS analysis of the 18 O-labeled FeGP cofactor revealed that the produced [18 O1 ]-acyl group is not exchanged with a CO ligand of the cofactor, indicating that the acyl and CO ligands are scrambled during photolysis rather than biosynthesis, which ruled out any biosynthesis mechanisms allowing acyl/CO ligands scrambling. Time-resolved infrared spectroscopy indicated that an acyl-Fe(CO)3 intermediate is formed during photolysis, in which scrambling of the CO and acyl ligands can occur. This finding also suggests that the light-excited FeGP cofactor has a higher affinity for external CO. These results contribute to our understanding of the biosynthesis and photosensitive properties of this unique H2 -activating natural complex.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Ligantes , Espectrometria de Massas em Tandem , Fotólise , Carbono , Proteínas Ferro-Enxofre/química
2.
Chemistry ; 29(23): e202203860, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36722398

RESUMO

A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on ß-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Aminoácidos/química , Peptídeo Hidrolases , Bicamadas Lipídicas/química , Proteólise , Dicroísmo Circular , Dobramento de Proteína
3.
Front Mol Biosci ; 9: 929285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911953

RESUMO

The translocon-unassisted folding process of transmembrane domains of the microbial rhodopsins sensory rhodopsin I (HsSRI) and II (HsSRII), channelrhodopsin II (CrChR2), and bacteriorhodopsin (HsBR) during cell-free expression has been investigated by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS). Up to now, only a limited number of rhodopsins have been expressed and folded into the functional holoprotein in cell free expression systems, while other microbial rhodopsins fail to properly bind the chromophore all-trans retinal as indicated by the missing visible absorption. SEIRAS experiments suggest that all investigated rhodopsins lead to the production of polypeptides, which are co-translationally inserted into a solid-supported lipid bilayer during the first hour after the in-vitro expression is initiated. Secondary structure analysis of the IR spectra revealed that the polypeptides form a comparable amount of α-helical structure during the initial phase of insertion into the lipid bilayer. As the process progressed (>1 h), only HsBR exhibited a further increase and association of α-helices to form a compact tertiary structure, while the helical contents of the other rhodopsins stagnated. This result suggests that the molecular reason for the unsuccessful cell-free expression of the two sensory rhodopsins and of CrChR2 is not due to the translation process, but rather to the folding process during the post-translational period. Taking our previous observation into account that HsBR fails to form a tertiary structure in the absence of its retinal, we infer that the chromophore retinal is an integral component of the compaction of the polypeptide into its tertiary structure and the formation of a fully functional protein.

4.
Biochim Biophys Acta Biomembr ; 1864(6): 183873, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104491

RESUMO

The pH low insertion peptide (pHLIP) is a pH-sensitive cell penetrating peptide that transforms from an unstructured coil on the membrane surface at pH > 7, to a transmembrane (TM) α-helix at pH < 5. By exploiting this unique property, pHLIP attracts interest as a potential tool for drug delivery and visualisation of acidic tissues produced by various maladies such as cancer, inflammation, hypoxia etc. Even though the structures of initial and end states of pHLIP insertion have been widely accepted, the intermediate structures in between these two states are less clear. Here, we have applied in situ Surface-Enhanced Infrared Absorption spectroscopy to examine the pH-induced insertion and folding processes of pHLIP into a solid-supported lipid bilayer. We show that formation of partially helical structure already takes place at pH only slightly below 7.0, but with the helical axis parallel to the membrane surface. The peptide starts to reorientate its helix from horizontal to vertical direction, accompanied by the insertion into the TM region at pH < 6.2. Further insertion into the TM region of the peptide results in an increase of inherent α-helical structure and complete secondary structure formation at pH 5.3. Analysis of the changes of the carboxylate vibrational bands upon pH titration shows two distinctive groups of aspartates and glutamates with pKa values of 4.5 and 6.3, respectively. Comparison to the amide bands of the peptide backbone suggests that the latter Asp/Glu groups are directly involved in the conformational changes of pHLIP in the respective intermediate states.


Assuntos
Peptídeos Penetradores de Células , Bicamadas Lipídicas , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Conformação Proteica em alfa-Hélice
5.
FEBS J ; 282(17): 3412-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094576

RESUMO

UNLABELLED: [Fe]-hydrogenase (Hmd), an enzyme of the methanogenic energy metabolism, harbors an iron-guanylylpyridinol (FeGP) cofactor used for H2 cleavage. The generated hydride is transferred to methenyl-tetrahydromethanopterin (methenyl-H4MPT(+)). Most hydrogenotrophic methanogens contain the hmd-related genes hmdII and hmdIII. Their function is still elusive. We were able to reconstitute the HmdII holoenzyme of Methanocaldococcus jannaschii with recombinantly produced apoenzyme and the FeGP cofactor, which is a prerequisite for in vitro functional analysis. Infrared spectroscopic and X-ray structural data clearly indicated binding of the FeGP cofactor. Methylene-H4MPT binding was detectable in the significantly altered infrared spectra of the HmdII holoenzyme and in the HmdII apoenzyme-methylene-H4 MPT complex structure. The related binding mode of the FeGP cofactor and methenyl-H4MPT(+) compared with Hmd and their multiple contacts to the polypeptide highly suggest a biological role in HmdII. However, holo-HmdII did not catalyze the Hmd reaction, not even in a single turnover process, as demonstrated by kinetic measurements. The found inactivity can be rationalized by an increased contact area between the C- and N-terminal folding units in HmdII compared with in Hmd, which impairs the catalytically necessary open-to-close transition, and by an exchange of a crucial histidine to a tyrosine. Mainly based on the presented data, a function of HmdII as Hmd isoenzyme, H2 sensor, FeGP-cofactor storage protein and scaffold protein for FeGP-cofactor biosynthesis could be excluded. Inspired by the recently found binding of HmdII to aminoacyl-tRNA synthetases and tRNA, we tentatively consider HmdII as a regulatory protein for protein synthesis that senses the intracellular methylene-H4 MPT concentration. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 4YT8; 4YT2; 4YT4 and 4YT5.


Assuntos
Apoenzimas/química , Proteínas Arqueais/química , Coenzimas/química , Holoenzimas/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Methanocaldococcus/química , Piridinas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Holoenzimas/genética , Holoenzimas/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Methanocaldococcus/enzimologia , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas/genética , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pterinas/química , Pterinas/metabolismo , Piridinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho
6.
PLoS One ; 9(7): e103307, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25058114

RESUMO

Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV) domain and a basic zipper (bZIP) domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR) difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA.


Assuntos
Proteínas de Algas/química , Criptocromos/química , DNA/metabolismo , Fatores de Transcrição/química , Proteínas de Algas/metabolismo , Sítios de Ligação , Criptocromos/metabolismo , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Homologia Estrutural de Proteína , Fatores de Transcrição/metabolismo
7.
J Am Chem Soc ; 134(6): 3271-80, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22260087

RESUMO

[Fe]-hydrogenase catalyzes the reversible hydride transfer from H(2) to methenyltetrahydromethanoptherin, which is an intermediate in methane formation from H(2) and CO(2) in methanogenic archaea. The enzyme harbors a unique active site iron-guanylylpyridinol (FeGP) cofactor, in which a low-spin Fe(II) is coordinated by a pyridinol-N, an acyl group, two carbon monoxide, and the sulfur of the enzyme's cysteine. Here, we studied the biosynthesis of the FeGP cofactor by following the incorporation of (13)C and (2)H from labeled precursors into the cofactor in growing methanogenic archaea and by subsequent NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) and IR analysis of the isolated cofactor and reference compounds. The pyridinol moiety of the cofactor was found to be synthesized from three C-1 of acetate, two C-2 of acetate, two C-1 of pyruvate, one carbon from the methyl group of l-methionine, and one carbon directly from CO(2). The metabolic origin of the two CO-ligands was CO(2) rather than C-1 or C-2 of acetate or pyruvate excluding that the two CO are derived from dehydroglycine as has previously been shown for the CO-ligands in [FeFe]-hydrogenases. A formation of CO from CO(2) via direct reduction catalyzed by a nickel-dependent CO dehydrogenase or from formate could also be excluded. When the cells were grown in the presence of (13)CO, the two CO-ligands and the acyl group became (13)C-labeled, indicating either that free CO is an intermediate in their synthesis or that free CO can exchange with these iron-bound ligands. Based on these findings, we propose pathways for how the FeGP cofactor might be synthesized.


Assuntos
Archaea/metabolismo , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Marcação por Isótopo/métodos , Metano/química , Acetatos/química , Carbono/química , Dióxido de Carbono/química , Isótopos de Carbono/química , Cisteína/química , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Prótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria Infravermelho/métodos
8.
Dalton Trans ; 41(3): 767-71, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22080303

RESUMO

[Fe]-hydrogenase catalyzes the reversible heterolytic cleavage of H(2) and stereo-specific hydride transfer to the substrate methenyltetrahydromethanopterin in methanogenic archaea. This enzyme contains a unique iron guanylylpyridinol (FeGP) cofactor as a prosthetic group. It has recently been proposed-on the basis of crystal structural analyses of the [Fe]-hydrogenase holoenzyme-that the FeGP cofactor contains an acyl-iron ligation, the first one reported in a biological system. We report here that the cofactor can be reversibly extracted with acids; its exact mass has been determined by electrospray ionization Fourier transform ion cyclotron resonance mass-spectrometry. The measured mass of the intact cofactor and its gas-phase fragments are consistent with the proposed structure. The mass of the light decomposition products of the cofactor support the presence of acyl-iron ligation. Attenuated total reflection infrared spectroscopy of the FeGP cofactor revealed a band near wave number 1700 cm(-1), which was assigned to the C=O (double bond) stretching mode of the acyl-iron ligand.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Espectrometria de Massas/métodos , Espectrofotometria Infravermelho/métodos , Archaea/química , Archaea/enzimologia , Proteínas Arqueais/química , Domínio Catalítico , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Estrutura Molecular
9.
FEBS Lett ; 583(3): 585-90, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19162018

RESUMO

[Fe]-hydrogenase is one of three types of enzymes known to activate H(2). Crystal structure analysis recently revealed that its active site iron is ligated square-pyramidally by Cys176-sulfur, two CO, an "unknown" ligand and the sp(2)-hybridized nitrogen of a unique iron-guanylylpyridinol-cofactor. We report here on the structure of the C176A mutated enzyme crystallized in the presence of dithiothreitol (DTT). It suggests an iron center octahedrally coordinated by one DTT-sulfur and one DTT-oxygen, two CO, the 2-pyridinol's nitrogen and the 2-pyridinol's 6-formylmethyl group in an acyl-iron ligation. This result led to a re-interpretation of the iron ligation in the wild-type.


Assuntos
Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Ferro/metabolismo , Adenina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citosina/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Methanococcales/enzimologia , Methanococcales/genética , Mutação/genética , Estrutura Quaternária de Proteína
10.
Phys Chem Chem Phys ; 10(42): 6381-7, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18972026

RESUMO

Surface enhanced infrared absorption spectroscopy (SEIRAS) has been employed to monitor the orientated assembly of a strep-tagged membrane protein on the gold surface via a streptavidin/biotin interlayer. The high surface sensitivity of SEIRAS allows for tracking the individual assembling steps on the molecular level. The sequence of surface modification steps comprises: (i) cross-linking of biotin to the self-assembled monolayer of cysteamine along the gold surface; (ii) adsorption of streptavidin to and desorption from the biotin layer; and (iii) adsorption of the strep-tagged membrane protein ecgltP (glutamate transporter of E. coli) on the streptavidin/biotin layer. The analysis of the SEIRA spectra reveals that the biotin layer undergoes a phase transition from an isotropic orientation to a densely packed layer during coupling to the cysteamine monolayer. Formation of the densely packed layer weakens the interaction between streptavidin and the biotin layer but yields a binding specificity of 80%. The specificity of strep-tagged ecgltP to the streptavidin layer is with 60% only modest. Nevertheless, the streptavidin/biotin interlayer reveals a higher regeneration propensity than the His-tag/Ni-NTA interlayer.


Assuntos
Biotina/química , Ouro/química , Estreptavidina/química , Adsorção , Sistema X-AG de Transporte de Aminoácidos/química , Transporte Biológico , Físico-Química/métodos , Cisteamina/química , Escherichia coli/metabolismo , Glutamina/química , Modelos Químicos , Ligação Proteica , Sensibilidade e Especificidade , Propriedades de Superfície , Fatores de Tempo
11.
J Am Chem Soc ; 126(30): 9445-57, 2004 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15281838

RESUMO

Electrochemically induced infrared difference spectra of cytochrome c on various chemically modified electrodes (CMEs) are recorded by exploiting the surface-enhancement exerted by a granular gold film. We have recently developed surface-enhanced infrared difference absorption spectroscopy (SEIDAS), which provides acute sensitivity to observe the minute enzymatic change of a protein on the level of a monolayer. By these means, we demonstrate that the relative band intensities in the potential-induced difference spectra of adsorbed cytochrome c are significantly dependent on the type of CME used (mercaptopropionic acid, mercaptoethanol, 4,4'-dithiodipyridine, or L-cysteine). These differences are attributed to the altered interaction of cytochrome c with the headgroup of the various CMEs leading to variations in surface orientation and relative distance from the surface. Nevertheless, the peak positions of the observed bands are identical among the CMEs employed. This implies that the internal conformational changes induced by the redox reaction of the adsorbed cytochrome c are not disturbed by the interaction with the CME and that full functionality of the protein is retained. Finally, we critically discuss our results within the framework of the different models for cytochrome c adsorption on CMEs.


Assuntos
Citocromos c/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cristalografia por Raios X , Eletroquímica/instrumentação , Eletroquímica/métodos , Eletrodos , Ouro/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA