Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0262180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972198

RESUMO

Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.


Assuntos
Regulação Fúngica da Expressão Gênica , Hypocreales/metabolismo , Nitrogênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Parede Celular/metabolismo , Bases de Dados Genéticas , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Genoma Fúngico , Estudo de Associação Genômica Ampla , Peso Molecular , Mutação , Fenótipo , Fosforilação , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Proteína S6 Ribossômica/química , Análise de Sequência de RNA , Transdução de Sinais , Sirolimo/farmacologia , Terpenos/química , Transcriptoma
2.
J Nat Prod ; 84(4): 1271-1282, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33600182

RESUMO

In the course of investigations on peptaibol chemodiversity from marine-derived Trichoderma spp., five new 15-residue peptaibols named pentadecaibins I-V (1-5) were isolated from the solid culture of the strain Trichoderma sp. MMS1255 belonging to the T. harzianum species complex. Phylogenetic analyses allowed precise positioning of the strain close to T. lentiforme lineage inside the Harzianum clade. Peptaibol sequences were elucidated on the basis of their MS/MS fragmentation and extensive 2D NMR experiments. Amino acid configurations were determined by Marfey's analyses. The pentadecaibins are based on the sequences Ac-Aib1-Gly2-Ala3-Leu4-Aib/Iva5-Gln6-Aib/Iva7-Val/Leu8-Aib9-Ala10-Aib11-Aib12-Aib13-Gln14-Pheol15. Characteristic of the pentadecaibin sequences is the lack of the Aib-Pro motif commonly present in peptaibols produced by Trichoderma spp. Genome sequencing of Trichoderma sp. MMS1255 allowed the detection of a 15-module NRPS-encoding gene closely associated with pentadecaibin biosynthesis. Pentadecaibins were assessed for their potential antiproliferative and antimicrobial activities.


Assuntos
Peptaibols/química , Trichoderma/química , Sequência de Aminoácidos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Trichoderma/classificação
3.
BMC Genomics ; 14: 121, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23432824

RESUMO

BACKGROUND: Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. RESULTS: The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. CONCLUSION: This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides.


Assuntos
Perfilação da Expressão Gênica , Interações Microbianas/genética , Trichoderma/genética , Trichoderma/fisiologia , Regulação para Baixo , Genes Fúngicos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Rhizoctonia/fisiologia , Regulação para Cima
4.
Appl Environ Microbiol ; 79(1): 18-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064341

RESUMO

Due to low iron availability under environmental conditions, many microorganisms excrete iron-chelating agents (siderophores) to cover their iron demands. A novel screening approach for the detection of siderophores using liquid chromatography coupled to high-resolution tandem mass spectrometry was developed to study the production of extracellular siderophores of 10 wild-type Trichoderma strains. For annotation of siderophores, an in-house library comprising 422 known microbial siderophores was established. After 96 h of cultivation, 18 different iron chelators were detected. Four of those (dimerum acid, fusigen, coprogen, and ferricrocin) were identified by measuring authentic standards. cis-Fusarinine, fusarinine A and B, and des-diserylglycylferrirhodin were annotated based on high-accuracy mass spectral analysis. In total, at least 10 novel iron-containing metabolites of the hydroxamate type were found. On average Trichoderma spp. produced 12 to 14 siderophores, with 6 common to all species tested. The highest number (15) of siderophores was detected for the most common environmental opportunistic and strongly fungicidic species, Trichoderma harzianum, which, however, did not have any unique compounds. The tropical species T. reesei had the most distinctive pattern, producing one unique siderophore (cis-fusarinine) and three others that were present only in T. harzianum and not in other species. The diversity of siderophores did not directly correlate with the antifungal potential of the species tested. Our data suggest that the high diversity of siderophores produced by Trichoderma spp. might be the result of further modifications of the nonribosomal peptide synthetase (NRPS) products and not due to diverse NRPS-encoding genes.


Assuntos
Ferro/metabolismo , Isótopos/metabolismo , Sideróforos/química , Sideróforos/metabolismo , Trichoderma/metabolismo , Cromatografia Líquida , Marcação por Isótopo , Sideróforos/classificação , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA