Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Med Genet ; 66(7): 104773, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120077

RESUMO

This paper focuses on genetic counselling in Phelan-McDermid syndrome (PMS), a rare neurodevelopmental disorder caused by a deletion 22q13.3 or a pathogenic variant in SHANK3. It is one of a series of papers written by the European PMS consortium as a consensus guideline. We reviewed the available literature based on pre-set questions to formulate recommendations on counselling, diagnostic work-up and surveillance for tumours related to ring chromosome 22. All recommendations were approved by the consortium, which consists of professionals and patient representatives, using a voting procedure. PMS can only rarely be diagnosed based solely on clinical features and requires confirmation via genetic testing. In most cases, the family will be referred to a clinical geneticist for counselling after the genetic diagnosis has been made. Family members will be investigated and, if indicated, the chance of recurrence discussed with them. Most individuals with PMS have a de novo deletion or a pathogenic variant of SHANK3. The 22q13.3 deletion can be a simple deletion, a ring chromosome 22, or the result of a parental balanced chromosomal anomaly, influencing the risk of recurrence. Individuals with a ring chromosome 22 have an increased risk of NF2-related schwannomatosis (formerly neurofibromatosis type 2) and atypical teratoid rhabdoid tumours, which are associated with the tumour-suppressor genes NF2 and SMARCB1, respectively, and both genes are located on chromosome 22. The prevalence of PMS due to a ring chromosome 22 is estimated to be 10-20%. The risk of developing a tumour in an individual with a ring chromosome 22 can be calculated as 2-4%. However, those individuals who do develop tumours often have multiple. We recommend referring all individuals with PMS and their parents to a clinical geneticist or a comparably experienced medical specialist for genetic counselling, further genetic testing, follow-up and discussion of prenatal diagnostic testing in subsequent pregnancies. We also recommend karyotyping to diagnose or exclude a ring chromosome 22 in individuals with a deletion 22q13.3 detected by molecular tests. If a ring chromosome 22 is found, we recommend discussing personalised follow-up for NF2-related tumours and specifically cerebral imaging between the age of 14 and 16 years.


Assuntos
Transtornos Cromossômicos , Neurofibromatose 2 , Cromossomos em Anel , Adolescente , Feminino , Humanos , Gravidez , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22/genética , Aconselhamento , Neurofibromatose 2/genética
2.
Hum Mutat ; 43(12): 2130-2140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251260

RESUMO

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Mutação , Splicing de RNA/genética , DNA , Fibroblastos/patologia , Neurofibromina 1/genética
3.
Circ Cardiovasc Genet ; 10(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28790152

RESUMO

BACKGROUND: Interpretation of missense variants can be especially difficult when the variant is also found in control populations. This is what we encountered for the LMNA c.992G>A (p.(Arg331Gln)) variant. Therefore, to evaluate the effect of this variant, we combined an evaluation of clinical data with functional experiments and morphological studies. METHODS AND RESULTS: Clinical data of 23 probands and 35 family members carrying this variant were retrospectively collected. A time-to-event analysis was performed to compare the course of the disease with carriers of other LMNA mutations. Myocardial biopsies were studied with electron microscopy and by measuring force development of the sarcomeres. Morphology of the nuclear envelope was assessed with immunofluorescence on cultured fibroblasts. The phenotype in probands and family members was characterized by atrioventricular conduction disturbances (61% and 44%, respectively), supraventricular arrhythmias (69% and 52%, respectively), and dilated cardiomyopathy (74% and 14%, respectively). LMNA p.(Arg331Gln) carriers had a significantly better outcome regarding the composite end point (malignant ventricular arrhythmias, end-stage heart failure, or death) compared with carriers of other pathogenic LMNA mutations. A shared haplotype of 1 Mb around LMNA suggested a common founder. The combined logarithm of the odds score was 3.46. Force development in membrane-permeabilized cardiomyocytes was reduced because of decreased myofibril density. Structural nuclear LMNA-associated envelope abnormalities, that is, blebs, were confirmed by electron microscopy and immunofluorescence microscopy. CONCLUSIONS: Clinical, morphological, functional, haplotype, and segregation data all indicate that LMNA p.(Arg331Gln) is a pathogenic founder mutation with a phenotype reminiscent of other LMNA mutations but with a more benign course.


Assuntos
Cardiopatias/genética , Lamina Tipo A/genética , Adulto , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Estudos de Coortes , Eletrocardiografia , Feminino , Efeito Fundador , Haplótipos , Cardiopatias/mortalidade , Cardiopatias/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Desequilíbrio de Ligação , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Membrana Nuclear/patologia , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Sarcômeros/fisiologia , Análise de Sequência de DNA
4.
Am J Med Genet A ; 161A(5): 973-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494849

RESUMO

Chudley-McCullough syndrome (CMS) is characterized by profound sensorineural hearing loss and brain anomalies. Variants in GPSM2 have recently been reported as a cause of CMS by Doherty et al. In this study we have performed exome sequencing of three CMS patients from two unrelated families from the same Dutch village. We identified one homozygous frameshift GPSM2 variants c.1473delG in all patients. We show that this variant arises from a shared, rare haplotype. Since the c.1473delG variant was found in Mennonite settlers, it likely originated in Europe. To support DNA diagnostics, we established an LOVD database for GPSM2 containing all variants thus far described.


Assuntos
Agenesia do Corpo Caloso/genética , Cistos Aracnóideos/genética , Exoma/genética , Perda Auditiva Neurossensorial/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Adulto , Pré-Escolar , Europa (Continente) , Feminino , Efeito Fundador , Humanos , Lactente , Masculino , Mutação , Países Baixos , América do Norte , Linhagem , Análise de Sequência de DNA
5.
J Med Genet ; 49(9): 598-600, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22972950

RESUMO

BACKGROUND: Gene-targeting studies in mice have revealed a key role for EVI1 protein in the maintenance of haematopoiesis, and argue in favour of a gene dosage requirement for EVI1 in the regulation of haematopoietic stem cells. Furthermore, a fusion transcript of MDS1 and EVI1 has been shown to play a critical role in maintaining long-term haematopoietic stem cell function. Inappropriate activation of EVI1, usually due to a translocation, is a well known and unfavourable change in several myeloid malignancies. It is not known whether haploinsufficiency of any of these genes leads to disease in humans. METHODS: SNP array analysis in a patient with in a neonate with congenital thrombocytopenia and subsequent aplastic anaemia RESULTS AND CONCLUSIONS: We report for the first time a constitutional deletion encompassing the EVI1 and MDS1 genes in a human, and argue that the deletion causes congenital bone marrow failure in this patient.


Assuntos
Anemia Aplástica/genética , Cromossomos Humanos Par 3/genética , Proteínas de Ligação a DNA/genética , Proto-Oncogenes/genética , Deleção de Sequência/genética , Trombocitopenia/congênito , Trombocitopenia/genética , Fatores de Transcrição/genética , Adulto , Anemia Aplástica/complicações , Feminino , Humanos , Lactente , Recém-Nascido , Proteína do Locus do Complexo MDS1 e EVI1 , Masculino , Polimorfismo de Nucleotídeo Único/genética , Gravidez
6.
Hum Mutat ; 31(10): 1125-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20672378

RESUMO

Keratosis Follicularis Spinulosa Decalvans (KFSD) is a rare genetic disorder characterized by development of hyperkeratotic follicular papules on the scalp followed by progressive alopecia of the scalp, eyelashes, and eyebrows. Associated eye findings include photophobia in childhood and corneal dystrophy. Due to the genetic and clinical heterogeneity of similar disorders, a definitive diagnosis of KFSD is often challenging. Toward identification of the causative gene we reanalyzed a large Dutch KFSD family. SNP arrays (1 M) redefined the locus to a 2.9-Mb region at Xp22.12-Xp22.11. Screening of all 14 genes in the candidate region identified MBTPS2 as the candidate gene carrying a c.1523A>G (p.Asn508Ser) missense mutation. The variant was also identified in two unrelated X-linked KFSD families and cosegregated with KFSD in all families. In symptomatic female carriers, skewed X-inactivation of the normal allele matched with increased severity of symptoms. MBTPS2 is required for cleavage of sterol regulatory element-binding proteins (SREBPs). In vitro functional expression studies of the c.1523A>G mutation showed that sterol responsiveness was reduced by half. Other missense mutations in MBTPS2 have recently been identified in patients with IFAP syndrome. We postulate that both phenotypes are in the spectrum of one genetic disorder with a partially overlapping phenotype.


Assuntos
Doença de Darier/genética , Metaloendopeptidases/genética , Mutação de Sentido Incorreto , Cromossomos Humanos X/genética , Doença de Darier/diagnóstico , Doença de Darier/patologia , Feminino , Humanos , Masculino , Países Baixos , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Polimorfismo de Nucleotídeo Único
7.
Am J Hum Genet ; 87(1): 146-53, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598277

RESUMO

Terminal osseous dysplasia (TOD) is an X-linked dominant male-lethal disease characterized by skeletal dysplasia of the limbs, pigmentary defects of the skin, and recurrent digital fibroma with onset in female infancy. After performing X-exome capture and sequencing, we identified a mutation at the last nucleotide of exon 31 of the FLNA gene as the most likely cause of the disease. The variant c.5217G>A was found in six unrelated cases (three families and three sporadic cases) and was not found in 400 control X chromosomes, pilot data from the 1000 Genomes Project, or the FLNA gene variant database. In the families, the variant segregated with the disease, and it was transmitted four times from a mildly affected mother to a more seriously affected daughter. We show that, because of nonrandom X chromosome inactivation, the mutant allele was not expressed in patient fibroblasts. RNA expression of the mutant allele was detected only in cultured fibroma cells obtained from 15-year-old surgically removed material. The variant activates a cryptic splice site, removing the last 48 nucleotides from exon 31. At the protein level, this results in a loss of 16 amino acids (p.Val1724_Thr1739del), predicted to remove a sequence at the surface of filamin repeat 15. Our data show that TOD is caused by this single recurrent mutation in the FLNA gene.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Neoplasias Ósseas/genética , Proteínas Contráteis/genética , Fibroma/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas dos Microfilamentos/genética , Transtornos da Pigmentação/genética , Adulto , Doenças do Desenvolvimento Ósseo/complicações , Neoplasias Ósseas/complicações , Pré-Escolar , Feminino , Fibroma/complicações , Filaminas , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Recidiva Local de Neoplasia , Linhagem , Transtornos da Pigmentação/complicações , Pigmentação da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA