Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 46: 102596, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031044

RESUMO

Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.


Assuntos
Melanoma , Nanopartículas Metálicas , Humanos , Camundongos , Animais , Ouro , Cálcio , Linfócitos T
2.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216400

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising therapeutic methods for cancer treatment; however, as single modality therapies, either PDT or PTT is still limited in its success rate. A dual application of both PDT and PTT, in a combined protocol, has gained immense interest. In this study, gold nanoparticles (AuNPs) were conjugated with a PDT agent, meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer, designed as nanotherapeutic agents that can activate a dual photodynamic/photothermal therapy in SH-SY5Y human neuroblastoma cells. The AuNP-mTHPC complex is biocompatible, soluble, and photostable. PDT efficiency is high because of immediate reactive oxygen species (ROS) production upon mTHPC activation by the 650-nm laser, which decreased mitochondrial membrane potential (∆ψm). Likewise, the AuNP-mTHPC complex is used as a photoabsorbing (PTA) agent for PTT, due to efficient plasmon absorption and excellent photothermal conversion characteristics of AuNPs under laser irradiation at 532 nm. Under the laser irradiation of a PDT/PTT combination, a twofold phototoxicity outcome follows, compared to PDT-only or PTT-only treatment. This indicates that PDT and PTT have synergistic effects together as a combined therapeutic method. Our study aimed at applying the AuNP-mTHPC approach as a potential treatment of cancer in the biomedical field.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fototerapia/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Ouro/química , Humanos , Lasers , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Fotossensibilizantes/química
3.
ACS Appl Mater Interfaces ; 13(31): 37693-37703, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34337945

RESUMO

This study presents antibiofilm coating formulations based on Pickering emulsion templating. The coating contains no bioactive material because its antibiofilm properties stem from passive mechanisms that derive solely from the superhydrophobic nature of the coating. Moreover, unlike most of the superhydrophobic formulations, our system is fluorine-free, thus making the method eminently suitable for food and medical applications. The coating formulation is based on water in toluene or xylene emulsions that are stabilized using commercial hydrophobic silica, with polydimethylsiloxane (PDMS) dissolved in toluene or xylene. The structure of the emulsions and their stability was characterized by confocal microscopy and cryogenic-scanning electron microscopy (cryo-SEM). The most stable emulsions are applied on polypropylene (PP) surfaces and dried in an oven to form PDMS/silica coatings in a process called emulsion templating. The structure of the resulting coatings was investigated by atomic force microscopy (AFM) and SEM. The surface of the coatings shows a honeycomb-like structure that exhibits a combination of micron-scale and nanoscale roughness, which endows it with its superhydrophobic properties. After tuning, the superhydrophobic properties of the coatings demonstrated highly efficient passive antibiofilm activity. In vitro antibiofilm trials with E. coli indicate that the coatings reduced the biofilm accumulation by 83% in the xylene-water-based surfaces and by 59% in the case of toluene-water-based surfaces.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Emulsões/farmacologia , Antibacterianos/química , Dimetilpolisiloxanos/química , Emulsões/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química , Tolueno/química , Xilenos/química
4.
ACS Nano ; 15(1): 1301-1309, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356143

RESUMO

Fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) is a powerful tool for cancer detection, staging, and follow-up. However, 18F-FDG-PET imaging has high rates of false positives, as it cannot distinguish between tumor and inflammation regions that both feature increased glucose metabolic activity. In the present study, we engineered liposomes coated with glucose and the chelator dodecane tetraacetic acid (DOTA) complexed with copper, to serve as a diagnostic technology for differentiating between cancer and inflammation. This liposome technology is based on FDA-approved materials and enables complexation with metal cations and radionuclides. We found that these liposomes were preferentially uptaken by cancer cell lines with high metabolic activity, mediated via glucose transporter-1. In vivo, these liposomes were avidly uptaken by tumors, as compared to liposomes without glucose coating. Moreover, in a combined tumor-inflammation mouse model, these liposomes accumulated in the tumor tissue and not in the inflammation region. Thus, this technology shows high specificity for tumors while evading inflammation and has potential for rapid translation to the clinic and integration with existing PET imaging systems, for effective reduction of false positives in cancer diagnosis.


Assuntos
Lipossomos , Neoplasias , Animais , Fluordesoxiglucose F18 , Glucose , Camundongos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade
5.
ACS Appl Mater Interfaces ; 11(49): 45368-45380, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31755692

RESUMO

Photodynamic therapy (PDT) is a promising recognized treatment for cancer. To date, PDT drugs are injected systemically, and the tumor area is irradiated to induce cell death. Current clinical protocols have several drawbacks, including limited accessibility to solid tumors and insufficient selectivity of drugs. Herein, we propose an alternative approach to improve PDT effectiveness by magnetic targeting of responsive carriers conjugated to the PDT drug. We coordinatively attached a meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer to Ce-doped-γ-Fe2O3 maghemite nanoparticles (MNPs). These MNPs are superparamagnetic and biocompatible, and the resulting mTHPC-MNPs nanocomposites are stable in aqueous suspensions. MDA-MB231 (human breast cancer) cells incubated with the mTHPC-MNPs showed high uptake and high death rates in cell population after PDT. The exposure to external magnetic forces during the incubation period directed the nanocomposites to selected sites enhancing drug accumulation that was double that of cells with no magnetic exposure. Next, breast cancer tumors were induced subcutaneously in mice and treated magnetically. In vivo results showed accelerated drug accumulation in tumors of mice injected with mTHPC-MNP nanocomposites, compared to the free drug. PDT irradiation led to a decrease in tumor size of both groups, whereas treatment with the focused magnetic nanocomposites led to significant tumor regression. Our results demonstrate a method to improve the current PDT treatments by applying magnetic forces to effectively direct the drug to cancerous tissue. This approach leads to a highly localized and effective PDT process, opening new directions for clinical PDT protocols.


Assuntos
Nanopartículas de Magnetita/química , Mesoporfirinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cério/química , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Magnetismo , Nanopartículas de Magnetita/uso terapêutico , Mesoporfirinas/química , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Ann Biomed Eng ; 47(4): 980-989, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30673956

RESUMO

Metastasis of cancer to the spine impacts bone quality. This study aims to characterize vertebral microdamage secondary to metastatic disease considering the pattern of damage and its relationship to stress and strain under load. Osteolytic and mixed osteolytic/osteoblastic vertebral metastases were produced in athymic rats via HeLa cervical or canine Ace-1 prostate cancer cell inoculation, respectively. After 21 days, excised motion segments (T12-L2) were µCT scanned, stained with BaSO4 and re-imaged. T13-L2 motion segments were loaded in axial compression to induce microdamage, re-stained and re-imaged. L1 (loaded) and T12 (unloaded) vertebrae were fixed, sample blocks cut, polished and BSE imaged. µFE models were generated of all L1 vertebrae with displacement boundary conditions applied based on the loaded µCT images. µCT stereological analysis, BSE analysis and µFE derived von Mises stress and principal strains were quantitatively compared (ANOVA), spatial correlations determined and patterns of microdamage assessed qualitatively. BaSO4 identified microdamage was found to be spatially correlated with regions of high stress in µFEA. Load-induced microdamage was shown to be elevated in the presence of osteolytic and mixed metastatic disease, with diffuse, crossed hatched areas of microdamage present in addition to linear microdamage and microfractures in metastatic tissue, suggesting diminished bone quality.


Assuntos
Fraturas de Estresse , Vértebras Lombares , Fraturas da Coluna Vertebral , Neoplasias da Coluna Vertebral , Animais , Feminino , Análise de Elementos Finitos , Fraturas de Estresse/metabolismo , Fraturas de Estresse/patologia , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Ratos , Fraturas da Coluna Vertebral/metabolismo , Fraturas da Coluna Vertebral/patologia , Neoplasias da Coluna Vertebral/metabolismo , Neoplasias da Coluna Vertebral/patologia , Suporte de Carga
7.
J Struct Biol ; 199(2): 153-164, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28655593

RESUMO

Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour.


Assuntos
Osso e Ossos/química , Colágeno Tipo I/ultraestrutura , Metástase Neoplásica/fisiopatologia , Animais , Desenvolvimento Ósseo , Osso e Ossos/patologia , Osso e Ossos/ultraestrutura , Linhagem Celular Tumoral , Feminino , Células HeLa , Xenoenxertos , Humanos , Osteoblastos/patologia , Osteólise/patologia , Ratos , Coluna Vertebral/química , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
8.
J Mech Behav Biomed Mater ; 69: 75-84, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28040610

RESUMO

The negative impact of metastases on the mechanical performance of vertebral bone is often attributed to reduced bone density and/or compromised architecture. However limited characterization has been done on the impact of metastasis on the mineralization of bone tissue and resulting changes in material behaviour. This study aimed to evaluate the impact of metastasis on micro and nano scale characteristics of the mineral phase of bone, specifically mineral crystal growth, homogeneity of mineralization and changes in intrinsic material properties. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively (N=17 per group). A maximum of 21 days was allowed between inoculation and sacrifice of inoculated rats and healthy age-matched uninoculated controls (N=11). X-ray diffraction was used to assess average crystal size in crushed L1-L3 vertebrae; backscatter electron microscopy and nanoindentation were utilized to evaluate modifications in bone mineral density distribution and material behaviour (tissue hardness and modulus) in sagittal-sectioned, embedded and polished L5 vertebrae. HeLa inoculated samples showed reduced mineral crystal width compared to healthy controls. While both types of metastatic involvement reduced tissue mineral content, pathological osteoblastic bone, specific to Ace-1 inoculated samples, significantly decreased tissue mineral homogeneity, whereas osteolytic bone from HeLa samples saw a slight increase in homogeneity. The modulus and hardness of pathological osteoblastic bone was diminished compared to all other bone. Elucidating changes in material behaviour and mineralization of bone tissue is key to defining bone quality in the presence of metastatic involvement.


Assuntos
Densidade Óssea , Osso e Ossos/patologia , Calcificação Fisiológica , Metástase Neoplásica/patologia , Animais , Feminino , Células HeLa , Humanos , Ratos , Coluna Vertebral/patologia , Difração de Raios X
9.
J Orthop Res ; 34(12): 2126-2136, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27027407

RESUMO

Metastatic involvement in vertebral bone diminishes the mechanical integrity of the spine; however minimal data exist on the potential impact of metastases on the intrinsic material characteristics of the bone matrix. Thirty-four (34) female athymic rats were inoculated with HeLa (N = 17) or Ace-1 (N = 17) cancer cells lines producing osteolytic or mixed (osteolytic and osteoblastic) metastases, respectively. A maximum of 21 days was allowed between inoculation and rat sacrifice for vertebrae extraction. High performance liquid chromatography (HPLC) was utilized to determine modifications in collagen-I parameters such as proline hydroxylation and the formation of specific enzymatic and non-enzymatic (pentosidine) cross-links. Raman spectroscopy was used to determine relative changes in mineral crystallinity, mineral carbonation, mineral/collagen matrix ratio, collagen quality ratio, and proline hydroxylation. HPLC results showed significant increase in the formation of pentosidine and decrease in the formation of the enzymatic cross-link deoxy-pryridinoline within osteolytic bone compared to mixed bone. Raman results showed decreased crystallinity, increased carbonation, and collagen quality (aka 1660/1690 sub-band) ratio with osteolytic bone compared to mixed bone and healthy controls along with an observed increase in proline hydroxylation with metastatic involvement. The mineral/matrix ratio decreased in both osteolytic and mixed bone compared to healthy controls. Quantifying modifications within the intrinsic characteristics of bone tissue will provide a foundation to assess the impact of current therapies on the material behavior of bone tissue in the metastatic spine and highlight targets for the development of new therapeutics and approaches for treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2126-2136, 2016.


Assuntos
Carcinoma/metabolismo , Colágeno/metabolismo , Osteólise , Neoplasias da Coluna Vertebral/metabolismo , Vértebras Torácicas/metabolismo , Animais , Carcinoma/secundário , Feminino , Células HeLa , Humanos , Hidroxilação , Estresse Oxidativo , Prolina/metabolismo , Distribuição Aleatória , Ratos Nus , Neoplasias da Coluna Vertebral/secundário
10.
J Cell Mol Med ; 20(5): 815-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26917487

RESUMO

Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 µg/µl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 µg/µl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 µg/µl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers.


Assuntos
Amelogenina/farmacologia , Ligamento Colateral Médio do Joelho/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Propriocepção/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Alginatos/administração & dosagem , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos , Feminino , Humanos , Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/inervação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Terminações Nervosas/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Resistência à Tração , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA