Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444528

RESUMO

Recent epidemiologic studies support an association between chronic low-dose radiation exposure and the development of cardiovascular disease (CVD). The molecular mechanisms underlying the adverse effect of chronic low dose exposure are not fully understood. To address this issue, we have investigated changes in the heart proteome of ApoE deficient (ApoE-/-) C57Bl/6 female mice chronically irradiated for 300 days at a very low dose rate (1 mGy/day) or at a low dose rate (20 mGy/day), resulting in cumulative whole-body doses of 0.3 Gy or 6.0 Gy, respectively. The heart proteomes were compared to those of age-matched sham-irradiated ApoE-/- mice using label-free quantitative proteomics. Radiation-induced proteome changes were further validated using immunoblotting, enzyme activity assays, immunohistochemistry or targeted transcriptomics. The analyses showed persistent alterations in the cardiac proteome at both dose rates; however, the effect was more pronounced following higher dose rates. The altered proteins were involved in cardiac energy metabolism, ECM remodelling, oxidative stress, and ageing signalling pathways. The changes in PPARα, SIRT, AMPK, and mTOR signalling pathways were found at both dose rates and in a dose-dependent manner, whereas more changes in glycolysis and ECM remodelling were detected at the lower dose rate. These data provide strong evidence for the possible risk of cardiac injury following chronic low dose irradiation and show that several affected pathways following chronic irradiation overlap with those of ageing-associated heart pathology.

2.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269397

RESUMO

Glioblastoma stem-like cells (GSLCs) in glioblastoma limit effective treatment and promote therapeutic resistance and tumor recurrence. Using a combined radiation and drug-screening platform, we tested the combination of a histone deacetylase inhibitor (HDACi) and MAPK/ERK kinase inhibitor (MEKi) with radiation to predict the efficacy against GSLCs. To mimic a stem-like phenotype, glioblastoma-derived spheres were used and treated with a combination of HDACi (MS-275) and MEKi (TAK-733 or trametinib) with 4 Gy irradiation. The sphere-forming ability after the combined radiochemotherapy was investigated using a sphere formation assay, while the expression levels of the GSLC markers (CD44, Nestin and SOX2) after treatment were analyzed using Western blotting and flow cytometry. The combined radiochemotherapy treatment inhibited the sphere formation in both glioblastoma-derived spheres, decreased the expression of the GSLC markers in a cell-line dependent manner and increased the dead cell population. Finally, we showed that the combined treatment with radiation was more effective at reducing the GSLC markers compared to the standard treatment of temozolomide and radiation. These results suggest that combining HDAC and MEK inhibition with radiation may offer a new strategy to improve the treatment of glioblastoma.


Assuntos
Glioblastoma , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases/farmacologia , Temozolomida/farmacologia
3.
Front Oncol ; 12: 842418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299733

RESUMO

Background and Purpose: Increased levels of the chaperone protein GRP78 have been implicated in poorer outcomes of cancer therapy. We have therefore explored the functional connection between the expression of GRP78 and the development of radioresistance and metastatic behavior in HNSCC. Material and Methods: The association between gene expression of GRP78 and survival in HNSCC patients was examined using the TCGA database. The influence of ionizing radiation on the GRP78 levels in HNSCC cell lines, their secreted extracellular vesicles (EV) and non-irradiated EV-recipient cells was investigated by Western Blot and FACS. The consequences of chemical inhibition or experimental overexpression of GRP78 on radioresistance and migration of HNSCC cells were analyzed by clonogenic survival and gap closure assays. Results: Elevated levels of GRP78 RNA in HNSCC correlated with poorer overall survival. Radiation increased GRP78 protein expression on the surface of HNSCC cell lines. Experimental overexpression of GRP78 increased both radioresistance and migratory potential. Chemical inhibition of GRP78 impaired cell migration. EVs were identified as a potential source of increased GRP78 content as elevated levels of surface GRP78 were found in EVs released by irradiated cells. These vesicles transferred GRP78 to non-irradiated recipient cells during co-cultivation. Conclusions: We have identified the chaperone protein GRP78 as a potential driver of increased radioresistance and motility in HNSCC. The uptake of GRP78-rich EVs originating from irradiated cells may contribute to a poorer prognosis through bystander effects mediated by the transfer of GRP78 to non-irradiated cells. Therefore, we consider the chaperone protein GRP78 to be an attractive target for improving radiotherapy strategies.

4.
Front Public Health ; 9: 678856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277544

RESUMO

Background and Purpose: Cardiotoxicity is a well-known adverse effect of radiation therapy. Measurable abnormalities in the heart function indicate advanced and often irreversible heart damage. Therefore, early detection of cardiac toxicity is necessary to delay and alleviate the development of the disease. The present study investigated long-term serum proteome alterations following local heart irradiation using a mouse model with the aim to detect biomarkers of radiation-induced cardiac toxicity. Materials and Methods: Serum samples from C57BL/6J mice were collected 20 weeks after local heart irradiation with 8 or 16 Gy X-ray; the controls were sham-irradiated. The samples were analyzed by quantitative proteomics based on data-independent acquisition mass spectrometry. The proteomics data were further investigated using bioinformatics and ELISA. Results: The analysis showed radiation-induced changes in the level of several serum proteins involved in the acute phase response, inflammation, and cholesterol metabolism. We found significantly enhanced expression of proinflammatory cytokines (TNF-α, TGF-ß, IL-1, and IL-6) in the serum of the irradiated mice. The level of free fatty acids, total cholesterol, low-density lipoprotein (LDL), and oxidized LDL was increased, whereas that of high-density lipoprotein was decreased by irradiation. Conclusions: This study provides information on systemic effects of heart irradiation. It elucidates a radiation fingerprint in the serum that may be used to elucidate adverse cardiac effects after radiation therapy.


Assuntos
Coração , Proteômica , Animais , Biomarcadores/sangue , Coração/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Proteoma
5.
Radiat Environ Biophys ; 60(3): 397-410, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34287697

RESUMO

Reliable data on the effects of chronic prenatal exposure to low dose (LD) of ionizing radiation in humans are missing. There are concerns about adverse long-term effects that may persist throughout postnatal life of the offspring. Due to their slow cell cycle kinetics and life-long residence time in the organism, mesenchymal stem cells (MSCs) are more susceptible to low level genotoxic stress caused by extrinsic multiple LD events. The aim of this study was to investigate the effect of chronic, prenatal LD gamma irradiation to the biology of MSCs later in life. C3H mice were exposed in utero to chronic prenatal irradiation of 10 mGy/day over a period of 3 weeks. Two years later, MSCs were isolated from the bone marrow and analyzed in vitro for their radiosensitivity, for cellular senescence and for DNA double-strand break recognition after a second acute gamma-irradiation. In addition to these cellular assays, changes in protein expression were measured using HPLC-MS/MS and dysregulated molecular signaling pathways identified using bioinformatics. We observed radiation-induced proteomic changes in MSCs from the offspring of in utero irradiated mice (leading to ~ 9.4% of all detected proteins being either up- or downregulated) as compared to non-irradiated controls. The proteomic changes map to regulation pathways involved in the extracellular matrix, the response to oxidative stress, and the Wnt signaling pathway. In addition, chronic prenatal LD irradiation lead to an increased rate of in vitro radiation-induced senescence later in life and to an increased number of residual DNA double-strand breaks after 4 Gy irradiation, indicating a remarkable interaction of in vivo radiation in combination with a second acute dose of in vitro radiation. This study provides the first insight into a molecular mechanism of persistent MSC damage response by ionizing radiation exposure during prenatal time and will help to predict therapeutic safety and efficacy with respect to a clinical application of stem cells.


Assuntos
Raios gama/efeitos adversos , Células-Tronco Mesenquimais/efeitos da radiação , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteoma/efeitos da radiação , Animais , Bioensaio , Células Cultivadas , Senescência Celular/efeitos da radiação , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Reparo do DNA , Desenvolvimento Embrionário , Feminino , Masculino , Troca Materno-Fetal , Células-Tronco Mesenquimais/metabolismo , Camundongos Mutantes , Gravidez , Via de Sinalização Wnt
6.
Methods Mol Biol ; 2261: 207-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33420991

RESUMO

Extracellular vesicles (EVs) are freely circulating nano/micrometer-sized membrane-bound vesicles released by various cell types. Their cargo consists of proteins, lipids, metabolites, and different types of RNA molecules reflecting the origin of the secreting cell type or tissue. Since the EV cargo is constantly changing in response to pathological status or different environmental stressors, it has been extensively studied in the quest for biomarkers, especially in the cancer research. Mass spectrometry (MS)-based proteome analysis is a powerful tool to elucidate the protein cargo in EVs. This chapter describes and characterizes three MS-compatible lysis methods, namely by using urea, guanidium hydrochloride, and radioimmunoprecipitation buffer for isolating proteins from EVs.


Assuntos
Métodos Analíticos de Preparação de Amostras , Exossomos/metabolismo , Espectrometria de Massas , Proteínas/isolamento & purificação , Proteômica , Animais , Células Cultivadas , Guanidina/química , Humanos , Imunoprecipitação , Ureia/química
7.
Int J Radiat Biol ; 97(2): 256-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33211606

RESUMO

PURPOSE: The MSc Radiation Biology course is a highly interdisciplinary degree program placing radiation biology at the interface between biology, medicine, and physics, as well as their associated technologies. The goal was to establish an internationally acknowledged program with diverse and heterogeneous student cohorts, who benefit from each other academically as well as culturally. We have completed a Five-Year evaluation of the program to assess our qualification profile and the further direction we want to take. MATERIALS AND METHODS: We evaluated the student cohort's data from the last 5 years regarding gender, age, and nationality as well as the highest degree before applying and career path after graduation. RESULTS: Data shows a great diversity regarding nationalty as well as undergraduate background. Cohort sizes could be increased and future prospects mainly aimed to a PhD. Measures after regular quality meetings and students' feedback led to improving the curriculum and workload, teacher's training, and changes to examination regulations. CONCLUSIONS: After 5 years, statistics show that our expectations have been met exceedingly. All graduates had excellent career opportunities reflecting the necessity of this MSc and its topics. We are continuously working on improving the program and adapting the curriculum to the requirements in radiation sciences. The future vision includes an expansion of the program as well as undergraduate education opportunities in this field.


Assuntos
Radiobiologia/educação , Adulto , Currículo , Feminino , Humanos , Masculino
8.
Cancers (Basel) ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327491

RESUMO

The miR-221 expression is dependent on the oncogenic RAS-RAF-MEK pathway activation and influences epithelial-to-mesenchymal transition (EMT). The Cancer Genome Atlas (TCGA) database analysis showed high gene significance for ZEB1 with EMT module analysis and miR-221 overexpression within the triple-negative breast cancer (TNBC) and HER2+ subgroups when compared to luminal A/B subgroups. EMT marker expression analysis after MEK1 (TAK-733) inhibitor treatment and irradiation was combined with miR-221 and ZEB1 expression analysis. The interaction of miR-221 overexpression with irradiation and its influence on migration, proliferation, colony formation and subsequent EMT target activation were investigated. The results revealed that MEK1 inhibitor treatment combined with irradiation could decrease the migratory potential of breast cancer cells including reduction of miR-221 and corresponding downstream ZEB1 (EMT) marker expression. The clonogenic survival assays revealed that miR-221 overexpressing SKBR3 cells were more radioresistant when compared to the control. Remarkably, the effect of miR-221 overexpression on migration in highly proliferative and highly HER2-positive SKBR3 cells remained constant even upon 8 Gy irradiation. Further, in naturally miR-221-overexpressing MDA-MB-231 cells, the proliferation and migration significantly decrease after miR-221 knockdown. This leads to the assumption that radiation alone is not reducing migration capacity of miR-221-overexpressing cells and that additional factors play an important role in this context. The miR-221/ZEB1 activity is efficiently targeted upon MEK1 inhibitor (TAK-733) treatment and when combined with irradiation treatment, significant reduction in migration of breast cancer cells was shown.

9.
Proteomes ; 8(4)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114474

RESUMO

Radiation-induced inflammation leading to the permeability of the endothelial barrier may increase the risk of cardiovascular disease. The aim of this study was to investigate potential mechanisms in vitro at the level of the proteome in human coronary artery endothelial cells (HCECest2) that were exposed to radiation doses of 0, 0.25, 0.5, 2.0 and 10 Gy (60Co-γ). Proteomics analysis was performed using mass spectrometry in a label-free data-independent acquisition mode. The data were validated using bioinformatics and immunoblotting. The low- and moderate-dose-irradiated samples (0.25 Gy, 0.5 Gy) showed only scarce proteome changes. In contrast, an activation of DNA-damage repair, inflammation, and oxidative stress pathways was seen after the high-dose treatments (2 and 10 Gy). The level of the DNA damage response protein DDB2 was enhanced early at the 10 Gy dose. The expression of proteins belonging to the inflammatory response or cGAS-STING pathway (STING, STAT1, ICAM1, ISG15) increased in a dose-dependent manner, showing the strongest effects at 10 Gy after one week. This study suggests a connection between the radiation-induced DNA damage and the induction of inflammation which supports the inhibition of the cGAS-STING pathway in the prevention of radiation-induced cardiovascular disease.

10.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957660

RESUMO

Epidemiological studies on workers employed at the Mayak plutonium enrichment plant have demonstrated an association between external gamma ray exposure and an elevated risk of ischemic heart disease (IHD). In a previous study using fresh-frozen post mortem samples of the cardiac left ventricle of Mayak workers and non-irradiated controls, we observed radiation-induced alterations in the heart proteome, mainly downregulation of mitochondrial and structural proteins. As the control group available at that time was younger than the irradiated group, we could not exclude age as a confounding factor. To address this issue, we have now expanded our study to investigate additional samples using archival formalin-fixed paraffin-embedded (FFPE) tissue. Importantly, the control group studied here is older than the occupationally exposed (>500 mGy) group. Label-free quantitative proteomics analysis showed that proteins involved in the lipid metabolism, sirtuin signaling, mitochondrial function, cytoskeletal organization, and antioxidant defense were the most affected. A histopathological analysis elucidated large foci of fibrotic tissue, myocardial lipomatosis and lymphocytic infiltrations in the irradiated samples. These data highlight the suitability of FFPE material for proteomics analysis. The study confirms the previous results emphasizing the role of adverse metabolic changes in the radiation-associated IHD. Most importantly, it excludes age at the time of death as a confounding factor.


Assuntos
Isquemia Miocárdica/metabolismo , Plutônio/efeitos adversos , Proteoma/metabolismo , Proteoma/efeitos da radiação , Cromatografia Líquida , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Formaldeído/química , Humanos , Metabolismo dos Lipídeos/efeitos da radiação , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/patologia , Exposição Ocupacional , Inclusão em Parafina , Análise de Componente Principal , Mapas de Interação de Proteínas , Proteômica/métodos , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Sirtuínas/metabolismo , Espectrometria de Massas em Tandem , Fixação de Tecidos
12.
Int J Radiat Biol ; 96(10): 1228-1235, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32579043

RESUMO

Since early April 2020, there has been intense debate over proposed clinical use of ionizing radiation to treat life-threatening pneumonia in Coronavirus Disease 2019 (COVID-19) patients. At least twelve relevant papers appeared by 20 May 2020. The radiation dose proposed for clinical trials are a single dose (0.1-1 Gy) or two doses (a few mGy followed by 0.1-0.25 Gy involving a putative adaptive response, or 1-1.5 Gy in two fractions 2-3 days apart). The scientific rationale for such proposed so-called low dose radiotherapy (LDRT) is twofold (note that only doses below 0.1 Gy are considered as low doses in the field of radiation protection, but here we follow the term as conventionally used in the field of radiation oncology). Firstly, the potentially positive observations in human case series and biological studies in rodent models on viral or bacterial pneumonia that were conducted in the pre-antibiotic era. Secondly, the potential anti-inflammatory properties of LDRT, which have been seen when LDRT is applied locally to subacute degenerative joint diseases, mainly in Germany. However, the human and animal studies cited as supportive evidence have significant limitations, and whether LDRT produces anti-inflammatory effects in the inflamed lung or exacerbates ongoing COVID-19 damage remains unclear. Therefore, we conclude that the available scientific evidence does not justify clinical trials of LDRT for COVID-19 pneumonia, with unknown benefit and known mortality risks from radiogenic cancer and circulatory disease. Despite the significant uncertainties in these proposals, some clinical trials are ongoing and planned. This paper gives an overview of current situations surrounding LDRT for COVID-19 pneumonia.


Assuntos
Betacoronavirus , Infecções por Coronavirus/radioterapia , Pneumonia Viral/radioterapia , Animais , COVID-19 , Ensaios Clínicos como Assunto , Humanos , Pandemias , Dosagem Radioterapêutica , SARS-CoV-2
14.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230970

RESUMO

Normal tissue toxicity is a dose-limiting factor in radiation therapy. Therefore, a detailed understanding of the normal tissue response to radiation is necessary to predict the risk of normal tissue toxicity and to development strategies for tissue protection. One component of normal tissue that is continuously exposed during therapeutic irradiation is the circulating population of peripheral blood mononuclear cells (PBMC). PBMCs are highly sensitive to ionizing radiation (IR); however, little is known about how IR affects the PBMC response on a systemic level. It was the aim of this study to investigate whether IR was capable to induce changes in the composition and function of extracellular vesicles (EVs) secreted from PBMCs after radiation exposure to different doses. Therefore, whole blood samples from healthy donors were exposed to X-ray radiation in the clinically relevant doses of 0, 0.1, 2 or 6 Gy and PBMC-secreted EVs were isolated 72 h later. Proteome and miRNome analysis of EVs as well as functional studies were performed. Secreted EVs showed a dose-dependent increase in the number of significantly deregulated proteins and microRNAs. For both, proteome and microRNA data, principal component analysis showed a dose-dependent separation of control and exposed groups. Integrated pathway analysis of the radiation-regulated EV proteins and microRNAs consistently predicted an association of deregulated molecules with apoptosis, cell death and survival. Functional studies identified endothelial cells as an efficient EV recipient system, in which irradiation of recipient cells further increased the uptake. Furthermore an apoptosis suppressive effect of EVs from irradiated PBMCs in endothelial recipient cells was detected. In summary, this study demonstrates that IR modifies the communication between PBMCs and endothelial cells. EVs from irradiated PBMC donors were identified as transmitters of protective signals to irradiated endothelial cells. Thus, these data may lead to the discovery of biomarker candidates for radiation dosimetry and even more importantly, they suggest EVs as a novel systemic communication pathway between irradiated normal, non-cancer tissues.


Assuntos
Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Exposição à Radiação , Vesículas Secretórias/metabolismo , Apoptose/efeitos da radiação , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Humanos , MicroRNAs/genética , Proteoma/metabolismo , Radiação Ionizante , Radioterapia/métodos
15.
FEBS Open Bio ; 10(7): 1238-1250, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333827

RESUMO

Mesenchymal stem cells (MSCs) are multilineage adult stem cells with considerable potential for cell-based regenerative therapies. In vitro expansion changes their epigenetic and cellular properties, with a poorly understood impact on DNA damage response (DDR) and genome stability. We report here results of a transcriptome-based pathway analysis of in vitro-expanded human bone marrow-derived mesenchymal stem cell (hBM-MSCs), supplemented with cellular assays focusing on DNA double-strand break (DSB) repair. Gene pathways affected by in vitro aging were mapped using gene ontology, KEGG, and GSEA, and were found to involve DNA repair, homologous recombination (HR), cell cycle control, and chromosomal replication. Assays for the recognition (γ-H2AX + 53BP1 foci) and repair (pBRCA1 + Î³-H2AX foci) of X-ray-induced DNA DSBs in hBM-MSCs show that over a period of 8 weeks of in vitro aging (i.e., about 10 doubling times), cells exhibit a reduced DDR and a higher fraction of residual DNA damage. Furthermore, a distinct subpopulation of cells with impaired DNA DSB recognition was observed. Several genes that participate in DNA repair by HR (e.g., Rad51, Rad54, BRCA1) show a 2.3- to fourfold reduction of their mRNA expression by qRT-PCR. We conclude that the in vitro expansion of hMSCs can lead to aging-related impairment of the recognition and repair of DNA breaks.


Assuntos
Proteína BRCA1/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Células-Tronco Mesenquimais/metabolismo , Rad51 Recombinase/metabolismo , Proteína BRCA1/genética , Células Cultivadas , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rad51 Recombinase/genética
16.
Int J Radiat Biol ; 96(5): 642-650, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31914348

RESUMO

Purpose: Pulmonary inflammation is an adverse consequence of radiation therapy in breast cancer. The aim of this study was to elucidate biological pathways leading to this pathology.Materials and methods: Lung endothelial cells were isolated 24 h after thorax-irradiation (sham or 10 Gy X-ray) from female C57Bl/6 mice and cultivated for 6 days.Results: Quantitative proteomic analysis of lung endothelial cells was done using data independent acquisition (DIA) mass spectrometry. The data were analyzed using Ingenuity Pathway Analysis and STRINGdb. In total, 4220 proteins were identified using DIA of which 60 were dysregulated in the irradiated samples (fold change ≥2.00 or ≤0.50; q-value <0.05). Several (12/40) upregulated proteins formed a cluster of inflammatory proteins with STAT1 and IRF3 as predicted upstream regulators. The several-fold increased expression of STAT1 and STAT-associated ISG15 was confirmed by immunoblotting. The expression of antioxidant proteins SOD1 and PRXD5 was downregulated suggesting radiation-induced oxidative stress. Similarly, the phosphorylated (active) forms of STING and IRF3, both members of the cGAS/STING pathway, were downregulated.Conclusions: These data suggest the involvement of JAK/STAT and cGas/STING pathways in the genesis of radiation-induced lung inflammation. These pathways may be used as novel targets for the prevention of radiation-induced lung damage.


Assuntos
Células Endoteliais/efeitos da radiação , Inflamação/etiologia , Pulmão/efeitos da radiação , Espectrometria de Massas/métodos , Fator de Transcrição STAT1/fisiologia , Animais , Feminino , Fator Regulador 3 de Interferon/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Transdução de Sinais
17.
J Proteome Res ; 19(1): 337-345, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31657930

RESUMO

The impact of low-dose ionizing radiation (IR) on the human brain has recently attracted attention due to the increased use of IR for diagnostic purposes. The aim of this study was to investigate low-dose radiation response in the hippocampus. Female B6C3F1 mice were exposed to total body irradiation with 0 (control), 0.063, 0.125, or 0.5 Gy. Quantitative label-free proteomic analysis of the hippocampus was performed after 24 months. CREB signaling and CREB-associated pathways were affected at all doses. The lower doses (0.063 and 0.125 Gy) induced the CREB pathway, whereas the exposure to 0.5 Gy deactivated CREB. Similarly, the lowest dose (0.063 Gy) was anti-inflammatory, reducing the number of activated microglia. In contrast, induction of activated microglia and reactive astroglia was found at 0.5 Gy, suggesting increased inflammation and astrogliosis, respectively. The apoptotic markers BAX and cleaved CASP-3 and oxidative stress markers were increased only at the highest dose. Since the activated CREB pathway plays a central role in learning and memory, these data suggest neuroprotection at the lowest dose (0.063 Gy) but neurodegeneration at 0.5 Gy. The response to 0.5 Gy resembles alterations found in healthy aging and thus may represent radiation-induced accelerated aging of the brain.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Inflamação/etiologia , Camundongos Endogâmicos , Plasticidade Neuronal/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Carbonilação Proteica/efeitos da radiação , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Irradiação Corporal Total
18.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817026

RESUMO

In children, ketamine sedation is often used during radiological procedures. Combined exposure of ketamine and radiation at doses that alone did not affect learning and memory induced permanent cognitive impairment in mice. The aim of this study was to elucidate the mechanism behind this adverse outcome. Neonatal male NMRI mice were administered ketamine (7.5 mg kg-1) and irradiated (whole-body, 100 mGy or 200 mGy, 137Cs) one hour after ketamine exposure on postnatal day 10. The control mice were injected with saline and sham-irradiated. The hippocampi were analyzed using label-free proteomics, immunoblotting, and Golgi staining of CA1 neurons six months after treatment. Mice co-exposed to ketamine and low-dose radiation showed alterations in hippocampal proteins related to neuronal shaping and synaptic plasticity. The expression of brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein, and postsynaptic density protein 95 were significantly altered only after the combined treatment (100 mGy or 200 mGy combined with ketamine, respectively). Increased numbers of basal dendrites and branching were observed only after the co-exposure, thereby constituting a possible reason for the displayed alterations in behavior. These data suggest that the risk of radiation-induced neurotoxic effects in the pediatric population may be underestimated if based only on the radiation dose.


Assuntos
Região CA1 Hipocampal/patologia , Ketamina/toxicidade , Neurônios/patologia , Neurônios/efeitos da radiação , Radiação Ionizante , Animais , Animais Recém-Nascidos , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos dos fármacos , Proteoma/metabolismo
19.
Int J Radiat Biol ; 95(12): 1627-1639, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31509479

RESUMO

Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.


Assuntos
Diferenciação Celular/efeitos da radiação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos da radiação , Apoptose/efeitos da radiação , Biomarcadores/metabolismo , Contagem de Células , Senescência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , MicroRNAs/genética , Células-Tronco Neurais/metabolismo , Fatores de Tempo
20.
Anal Biochem ; 584: 113390, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401005

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane-bound organelles that have generated interest as they reflect the physiological condition of their source. Mass spectrometric (MS) analyses of protein cargo of EVs may lead to the discovery of biomarkers for diseases. However, for a comprehensive MS-based proteomics analysis, an optimal lysis of the EVs is required. Six methods for the protein extraction from EVs secreted by the head and neck cell line BHY were compared. Commercial radioimmunoprecipitation assay (RIPA) buffer outperformed the other buffers investigated in this study (Tris-SDS, Tris-Triton, GuHCl, urea-thiourea, and commercial Cell-lysis buffer). Following lysis with RIPA buffer, 310 proteins and 1469 peptides were identified using LTQ OrbitrapXL mass spectrometer. Among these, 86% of proteins and 72% of peptides were identified in all three replicates. In the case of other buffers, Tris-Triton identified on average 277 proteins, Cell-lysis buffer 257 proteins, and Tris-SDS, GuHCl and urea-thiourea each 267 proteins. In total, 399 proteins including 74 of the top EV markers (Exocarta) were identified, the most of the latter (73) using RIPA. The proteins exclusively identified using RIPA represented all Gene Ontology cell compartments. This study suggests that RIPA is an optimal lysis buffer for EVs in combination with MS.


Assuntos
Fracionamento Químico/métodos , Vesículas Extracelulares/metabolismo , Espectrometria de Massas , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Soluções Tampão , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA