Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(33): 12157-62, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25097261

RESUMO

The mechanism by which oxidative stress induces inflammation and vice versa is unclear but is of great importance, being apparently linked to many chronic inflammatory diseases. We show here that inflammatory stimuli induce release of oxidized peroxiredoxin-2 (PRDX2), a ubiquitous redox-active intracellular enzyme. Once released, the extracellular PRDX2 acts as a redox-dependent inflammatory mediator, triggering macrophages to produce and release TNF-α. The oxidative coupling of glutathione (GSH) to PRDX2 cysteine residues (i.e., protein glutathionylation) occurs before or during PRDX2 release, a process central to the regulation of immunity. We identified PRDX2 among the glutathionylated proteins released in vitro by LPS-stimulated macrophages using mass spectrometry proteomic methods. Consistent with being part of an inflammatory cascade, we find that PRDX2 then induces TNF-α release. Unlike classical inflammatory cytokines, PRDX2 release does not reflect LPS-mediated induction of mRNA or protein synthesis; instead, PRDX2 is constitutively present in macrophages, mainly in the reduced form, and is released in the oxidized form on LPS stimulation. Release of PRDX2 is also observed in human embryonic kidney cells treated with TNF-α. Importantly, the PRDX2 substrate thioredoxin (TRX) is also released along with PRDX2, enabling an oxidative cascade that can alter the -SH status of surface proteins and thereby facilitate activation via cytokine and Toll-like receptors. Thus, our findings suggest a model in which the release of PRDX2 and TRX from macrophages can modify the redox status of cell surface receptors and enable induction of inflammatory responses. This pathway warrants further exploration as a potential novel therapeutic target for chronic inflammatory diseases.


Assuntos
Glutationa/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Animais , Western Blotting , Linhagem Celular , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos
2.
Arthritis Rheum ; 63(11): 3243-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21792838

RESUMO

OBJECTIVE: The effect of nerve growth factor (NGF) and its receptor (NGFR) in inflammatory diseases is a novel research field. The purpose of this study was to investigate the role of NGF/NGFR in human T cell subpopulations and fibroblast-like synovial cells (FLS) and examine its pathophysiologic significance in psoriatic arthritis (PsA) and rheumatoid arthritis (RA). METHODS: Expression of NGF/NGFR was examined in synovial fluid (SF), FLS, peripheral blood (PB)-derived T cells, and SF-derived T cells from patients with PsA, RA, and osteoarthritis (OA). NGF levels were determined by enzyme-linked immunosorbent assay. NGF-induced T cell/FLS proliferation was examined by MTT assay. Low-affinity (p75)/high-affinity (TrkA) NGFR expression was determined by high-dimensional fluorescence-activated cell sorting. A monochlorobimane assay was used to determine the effect of NGF on T cell survival. RESULTS: Levels of NGF were higher in SF samples from PsA and RA patients as compared to SF samples from OA patients. NGF-induced FLS proliferation was more marked in PsA and RA patients. TrkA was up-regulated on activated SF T cells from PsA (mean ± SD 22 ± 6.2%) and RA (8 ± 1.3%) patients, whereas in SF samples from OA patients, TrkA+CD3+ T cells were not detectable. NGF induced the proliferation of PB T cells, induced the phosphorylation of Akt in activated T cells, and consistent with known pAkt activity, inhibited tumor necrosis factor α-induced cell death in these T cells. CONCLUSION: Based on our findings, we propose a model in which NGF secreted by FLS into PsA and RA synovium promotes the survival of activated autoreactive T cells as well as FLS proliferation. Thus, NGF has the potential to sustain the chronic inflammatory cascades of arthritis of autoimmune origin.


Assuntos
Artrite Psoriásica/metabolismo , Artrite Reumatoide/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Adulto , Apoptose , Artrite Psoriásica/etiologia , Artrite Reumatoide/etiologia , Proliferação de Células , Humanos , Osteoartrite/etiologia , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Linfócitos T/metabolismo
3.
Proc Natl Acad Sci U S A ; 106(10): 3941-5, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19223582

RESUMO

Disorders affecting mitochondria, including those that directly affect the respiratory chain function or result from abnormalities in branched amino acid metabolism (organic acidemias), have been shown to be associated with impaired redox balance. Almost all of the evidence underlying this conclusion has been obtained from studies on patient biopsies or animal models. Since the glutathione (iGSH) system provides the main protection against oxidative damage, we hypothesized that untreated oxidative stress in individuals with mitochondrial dysfunction would result in chronic iGSH deficiency. We confirm this hypothesis here in studies using high-dimensional flow cytometry (Hi-D FACS) and biochemical analysis of freshly obtained blood samples from patients with mitochondrial disorders or organic acidemias. T lymphocyte subsets, monocytes and neutrophils from organic acidemia and mitochondrial patients who were not on antioxidant supplements showed low iGSH levels, whereas similar subjects on antioxidant supplements showed normal iGSH. Measures of iROS levels in blood were insufficient to reveal the chronic oxidative stress in untreated patients. Patients with organic acidemias showed elevated plasma protein carbonyls, while plasma samples from all patients tested showed hypocitrullinemia. These findings indicate that measurements of iGSH in leukocytes may be a particularly useful biomarker to detect redox imbalance in mitochondrial disorders and organic acidemias, thus providing a relatively non-invasive means to monitor disease status and response to therapies. Furthermore, studies here suggest that antioxidant therapy may be useful for relieving the chronic oxidative stress that otherwise occurs in patients with mitochondrial dysfunction.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Citrulina/sangue , Glutationa/deficiência , Mitocôndrias/patologia , Doenças Mitocondriais/complicações , Doenças Mitocondriais/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Células Sanguíneas/metabolismo , Humanos , Espaço Intracelular/metabolismo , Doenças Mitocondriais/sangue , Carbonilação Proteica , Espécies Reativas de Oxigênio/sangue
4.
Curr Opin Pharmacol ; 7(4): 355-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17602868

RESUMO

Glutathione (GSH) deficiency is associated with numerous pathological conditions. Administration of N-acetylcysteine (NAC), a cysteine prodrug, replenishes intracellular GSH levels. NAC, best known for its ability to counter acetaminophen toxicity, is a safe, well-tolerated antidote for cysteine/GSH deficiency. NAC has been used successfully to treat GSH deficiency in a wide range of infections, genetic defects and metabolic disorders, including HIV infection and COPD. Over two-thirds of 46 placebo-controlled clinical trials with orally administered NAC have indicated beneficial effects of NAC measured either as trial endpoints or as general measures of improvement in quality of life and well-being of the patients.


Assuntos
Acetilcisteína/administração & dosagem , Antídotos/administração & dosagem , Cisteína/deficiência , Sequestradores de Radicais Livres/administração & dosagem , Glutationa/deficiência , Acetaminofen/intoxicação , Acetilcisteína/efeitos adversos , Acetilcisteína/farmacocinética , Antídotos/efeitos adversos , Antídotos/farmacocinética , Ensaios Clínicos Controlados como Assunto , Fibrose Cística/tratamento farmacológico , Sequestradores de Radicais Livres/efeitos adversos , Sequestradores de Radicais Livres/farmacocinética , Infecções por HIV/tratamento farmacológico , Humanos , Pró-Fármacos , Qualidade de Vida
5.
Cancer Res ; 66(13): 6598-605, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16818632

RESUMO

MYC overexpression is thought to initiate tumorigenesis by inducing cellular proliferation and growth and to be restrained from causing tumorigenesis by inducing cell cycle arrest, cellular senescence, and/or apoptosis. Here we show that MYC can induce DNA breaks both in vitro and in vivo independent of increased production of reactive oxygen species (ROS). We provide an insight into the specific circumstances under which MYC generates ROS in vitro and propose a possible mechanism. We found that MYC induces DNA double-strand breaks (DSBs) independent of ROS production in murine lymphocytes in vivo as well as in normal human foreskin fibroblasts (NHFs) in vitro in normal (10%) serum, as measured by gammaH2AX staining. However, NHFs cultured in vitro in low serum (0.05%) and/or ambient oxygen saturation resulted in ROS-associated oxidative damage and DNA single-strand breaks (SSBs), as measured by Ape-1 staining. In NHFs cultured in low versus normal serum, MYC induced increased expression of CYP2C9, a gene product well known to be associated with ROS production. Specific inhibition of CYP2C9 by small interfering RNA was shown to partially inhibit MYC-induced ROS production. Hence, MYC overexpression can induce ROS and SSBs under some conditions, but generally induces widespread DSBs in vivo and in vitro independent of ROS production.


Assuntos
Dano ao DNA/fisiologia , Genes myc/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2C9 , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfócitos T/metabolismo , Linfócitos T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA