Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Bioorg Med Chem Lett ; 113: 129965, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39284456

RESUMO

DHODH inhibition represents an attractive approach to overcome differentiation blockade for the treatment of AML. In a previous communication, we described our efforts leading to the discovery of compound 3 (JNJ-74856665), an orally bioavailable, potent, and selective DHODH inhibitor for clinical development. Guided by the co-crystal structures bound to human DHODH, other fused six-membered constructs were explored as isosteric replacements of the isoquinolinone central core. The correct positioning of the nitrogen in these core systems proved to be essential in modulating potency. Herein is described the synthesis of these complexly functionalized cores and their profiling, leading to DHODH inhibitors that possess favorable properties suitable for further development.


Assuntos
Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/síntese química , Cristalografia por Raios X , Animais , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Relação Dose-Resposta a Droga
2.
Cell Rep ; 43(8): 114536, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39096901

RESUMO

Monocytic acute myeloid leukemia (AML) responds poorly to current treatments, including venetoclax-based therapy. We conducted in vivo and in vitro CRISPR-Cas9 library screenings using a mouse monocytic AML model and identified SETDB1 and its binding partners (ATF7IP and TRIM33) as crucial tumor promoters in vivo. The growth-inhibitory effect of Setdb1 depletion in vivo is dependent mainly on natural killer (NK) cell-mediated cytotoxicity. Mechanistically, SETDB1 depletion upregulates interferon-stimulated genes and NKG2D ligands through the demethylation of histone H3 Lys9 at the enhancer regions, thereby enhancing their immunogenicity to NK cells and intrinsic apoptosis. Importantly, these effects are not observed in non-monocytic leukemia cells. We also identified the expression of myeloid cell nuclear differentiation antigen (MNDA) and its murine counterpart Ifi203 as biomarkers to predict the sensitivity of AML to SETDB1 depletion. Our study highlights the critical and selective role of SETDB1 in AML with granulo-monocytic differentiation and underscores its potential as a therapeutic target for current unmet needs.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase , Células Matadoras Naturais , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Camundongos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Vigilância Imunológica , Monócitos/metabolismo , Monócitos/imunologia , Apoptose
3.
J Med Chem ; 67(13): 11254-11272, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889244

RESUMO

Acute myelogenous leukemia (AML), a heterogeneous disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway and preclinical findings demonstrated that DHODH is a metabolic vulnerability in AML as inhibitors can induce differentiation across multiple AML subtypes. As a result of virtual screening and structure-based drug design approaches, a novel series of isoquinolinone DHODH inhibitors was identified. Further lead optimization afforded JNJ-74856665 as an orally bioavailable, potent, and selective DHODH inhibitor with favorable physicochemical properties selected for clinical development in patients with AML and myelodysplastic syndromes (MDS).


Assuntos
Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos , Leucemia Mieloide Aguda , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacocinética , Descoberta de Drogas , Ratos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Quinolonas/farmacocinética , Quinolonas/síntese química , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
4.
Blood ; 144(11): 1206-1220, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38905635

RESUMO

ABSTRACT: The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent antiproliferative activity across several AML and acute lymphoblastic leukemia (ALL) cell lines and patient samples harboring KMT2A or NPM1 alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent antiproliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A cocrystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).


Assuntos
Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Proteínas Nucleares , Nucleofosmina , Humanos , Animais , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
ACS Med Chem Lett ; 15(3): 381-387, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505861

RESUMO

Dihydroorotate dehydrogenase (DHODH) is a mitochondrial enzyme that affects many aspects essential to cell proliferation and survival. Recently, DHODH has been identified as a potential target for acute myeloid leukemia therapy. Herein, we describe the identification of potent DHODH inhibitors through a scaffold hopping approach emanating from a fragment screen followed by structure-based drug design to further improve the overall profile and reveal an unexpected novel binding mode. Additionally, these compounds had low P-gp efflux ratios, allowing for applications where exposure to the brain would be required.

6.
Ann Hematol ; 103(6): 1989-2001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233570

RESUMO

Natural killer/T cell lymphoma (NKTCL) is a highly aggressive, heterogeneous non-Hodgkin lymphoma resulting from malignant proliferation of cytotoxic natural killer (NK) or T cells. Previous studies demonstrated variable expression of CD38 on NKTCL tumors. Daratumumab, a human IgGκ monoclonal antibody targeting CD38 with a direct on-tumor and immunomodulatory mechanism of action, was hypothesized to be a novel therapeutic option for patients with relapsed or refractory (R/R) NKTCL. In the phase 2 NKT2001 study (ClinicalTrials.gov Identifier: NCT02927925) assessing the safety and efficacy of daratumumab, a suboptimal overall response rate was seen in R/R NKTCL patients. One patient, whose tumors did not express CD38, responded to treatment, suggesting that the immunomodulatory activities of daratumumab may be sufficient to confer clinical benefit. To understand the suboptimal response rate and short duration of response, we investigated the immune profile of NKTCL patients from NKT2001 in the context of daratumumab anti-tumor activity. Tumor tissue and whole blood were, respectively, analyzed for CD38 expression and patient immune landscapes, which were assessed via cytometry by time-of-flight (CyTOF), multiparameter flow cytometry (MPFC), clonal sequencing, and plasma Epstein-Barr virus (EBV)-DNA level measurements. Changes observed in the immune profiles of NKTCL patients from NKT2001, including differences in B and T cell populations between responders and nonresponders, suggest that modulation of the immune environment is crucial for daratumumab anti-tumor activities in NKTCL. In conclusion, these findings highlight that the clinical benefit of daratumumab in NKTCL may be enriched by B/T cell-related biomarkers.


Assuntos
Anticorpos Monoclonais , Linfoma Extranodal de Células T-NK , Humanos , Anticorpos Monoclonais/uso terapêutico , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Linfoma Extranodal de Células T-NK/imunologia , Masculino , Feminino , ADP-Ribosil Ciclase 1 , Pessoa de Meia-Idade , Idoso , Adulto , Glicoproteínas de Membrana
7.
ACS Med Chem Lett ; 14(7): 955-961, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465311

RESUMO

Myeloid cell leukemia-1 (MCL-1) is a member of the antiapoptotic BCL-2 proteins family and a key regulator of mitochondrial homeostasis. Overexpression of MCL-1 is found in many cancer cells and contributes to tumor progression, which makes it an attractive therapeutic target. Pursuing our previous study of macrocyclic indoles for the inhibition of MCL-1, we report herein the impact of both pyrazole and indole isomerism on the potency and overall properties of this family of compounds. We demonstrated that the incorporation of a fluorine atom on the naphthalene moiety was a necessary step to improve cellular potency and that, combined with the introduction of various side chains on the pyrazole, it enhanced solubility significantly. This exploration culminated in the discovery of compounds (Ra)-10 and (Ra)-15, possessing remarkable cellular potency and properties.

8.
J Med Chem ; 65(16): 11241-11256, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35925768

RESUMO

Acute myelogenous leukemia (AML), a disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway; however, small molecule DHODH inhibitors were recently shown to induce differentiation in multiple AML subtypes. Using virtual screening and structure-based drug design approaches, a new series of N-heterocyclic 3-pyridyl carboxamide DHODH inhibitors were discovered. Two lead compounds, 19 and 29, have potent biochemical and cellular DHODH activity, favorable physicochemical properties, and efficacy in a preclinical model of AML.


Assuntos
Di-Hidro-Orotato Desidrogenase , Leucemia Mieloide Aguda , Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico
9.
J Med Chem ; 64(15): 10878-10889, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34279092

RESUMO

MyD88 gene mutation has been identified as one of the most prevalent driver mutations in the activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL). The published literature suggests that interleukin-1 receptor-associated kinase 1 (IRAK1) is an essential gene for ABC DLBCL harboring MyD88 mutation. Importantly, the scaffolding function of IRAK1, rather than its kinase activity, is required for tumor cell survival. Herein, we present our design, synthesis, and biological evaluation of a novel series of potent and selective IRAK1 degraders. One of the most potent compounds, Degrader-3 (JNJ-1013), effectively degraded cellular IRAK1 protein with a DC50 of 3 nM in HBL-1 cells. Furthermore, JNJ-1013 potently inhibited IRAK1 downstream signaling pathways and demonstrated strong anti-proliferative effects in ABC DLBCL cells with MyD88 mutation. This work suggests that IRAK1 degraders have the potential for treating cancers that are dependent on the IRAK1 scaffolding function.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 30(22): 127589, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007394

RESUMO

Dihydroorotate dehydrogenase (DHODH) enzymatic activity impacts many aspects critical to cell proliferation and survival. Recently, DHODH has been identified as a target for acute myeloid differentiation therapy. In preclinical models of AML, the DHODH inhibitor Brequinar (BRQ) demonstrated potent anti-leukemic activity. Herein we describe a carboxylic acid isostere study of Brequinar which revealed a more potent non-carboxylic acid derivative with improved cellular potency and good pharmacokinetic properties.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Ácidos Carboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Antineoplásicos/química , Compostos de Bifenilo/química , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Relação Estrutura-Atividade
11.
Blood Adv ; 4(18): 4538-4549, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32956453

RESUMO

B-cell maturation antigen (BCMA), a member of the tumor necrosis factor family of receptors, is predominantly expressed on the surface of terminally differentiated B cells. BCMA is highly expressed on plasmablasts and plasma cells from multiple myeloma (MM) patient samples. We developed a BCMAxCD3 bispecific antibody (teclistamab [JNJ-64007957]) to recruit and activate T cells to kill BCMA-expressing MM cells. Teclistamab induced cytotoxicity of BCMA+ MM cell lines in vitro (H929 cells, 50% effective concentration [EC50] = 0.15 nM; MM.1R cells, EC50 = 0.06 nM; RPMI 8226 cells, EC50 = 0.45 nM) with concomitant T-cell activation (H929 cells, EC50 = 0.21 nM; MM.1R cells, EC50 = 0.1 nM; RPMI 8226 cells, EC50 = 0.28 nM) and cytokine release. This activity was further increased in the presence of a γ-secretase inhibitor (LY-411575). Teclistamab also depleted BCMA+ cells in bone marrow samples from MM patients in an ex vivo assay with an average EC50 value of 1.7 nM. Under more physiological conditions using healthy human whole blood, teclistamab mediated dose-dependent lysis of H929 cells and activation of T cells. Antitumor activity of teclistamab was also observed in 2 BCMA+ MM murine xenograft models inoculated with human T cells (tumor inhibition with H929 model and tumor regression with the RPMI 8226 model) compared with vehicle and antibody controls. The specific and potent activity of teclistamab against BCMA-expressing cells from MM cell lines, patient samples, and MM xenograft models warrant further evaluation of this bispecific antibody for the treatment of MM. Phase 1 clinical trials (monotherapy, #NCT03145181; combination therapy, #NCT04108195) are ongoing for patients with relapsed/refractory MM.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Animais , Anticorpos Biespecíficos/farmacologia , Antígeno de Maturação de Linfócitos B , Humanos , Ativação Linfocitária , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T
12.
Cell Chem Biol ; 27(12): 1500-1509.e13, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888499

RESUMO

The interleukin-1 receptor-activated kinase 4 (IRAK4) belongs to the IRAK family of serine/threonine kinases and plays a central role in the innate immune response. However, the function of IRAK4 in tumor growth and progression remains elusive. Here we sought to determine the enzymatic and scaffolding functions of IRAK4 in activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL). We chose a highly selective IRAK4 kinase inhibitor to probe the biological effects of kinase inhibition and developed a series of IRAK4 degraders to evaluate the effects of protein degradation in ABC DLBCL cells. Interestingly, the results demonstrated that neither IRAK4 kinase inhibition nor protein degradation led to cell death or growth inhibition, suggesting a redundant role for IRAK4 in ABC DLBCL cell survival. IRAK4 degraders characterized in this study provide useful tools for understanding IRAK4 protein scaffolding function, which was previously unachievable using pharmacological perturbation.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos
13.
Blood Cancer J ; 10(6): 65, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483120

RESUMO

Redirecting T cells to specifically kill malignant cells has been validated as an effective anti-cancer strategy in the clinic with the approval of blinatumomab for acute lymphoblastic leukemia. However, the immunosuppressive nature of the tumor microenvironment potentially poses a significant hurdle to T cell therapies. In hematological malignancies, the bone marrow (BM) niche is protective to leukemic stem cells and has minimized the efficacy of several anti-cancer drugs. In this study, we investigated the impact of the BM microenvironment on T cell redirection. Using bispecific antibodies targeting specific tumor antigens (CD123 and BCMA) and CD3, we observed that co-culture of acute myeloid leukemia or multiple myeloma cells with BM stromal cells protected tumor cells from bispecific antibody-T cell-mediated lysis in vitro and in vivo. Impaired CD3 redirection cytotoxicity was correlated with reduced T cell effector responses and cell-cell contact with stromal cells was implicated in reducing T cell activation and conferring protection of cancer cells. Finally, blocking the VLA4 adhesion pathway in combination with CD3 redirection reduced the stromal-mediated inhibition of cytotoxicity and T cell activation. Our results lend support to inhibiting VLA4 interactions along with administering CD3 redirection therapeutics as a novel combinatorial regimen for robust anti-cancer responses.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Medula Óssea/efeitos dos fármacos , Complexo CD3/imunologia , Integrina alfa4beta1/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Antígeno de Maturação de Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/patologia , Complexo CD3/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Humanos , Integrina alfa4beta1/imunologia , Subunidade alfa de Receptor de Interleucina-3/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Microambiente Tumoral/efeitos dos fármacos
14.
Blood Adv ; 4(5): 906-919, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32150609

RESUMO

CD33 is expressed in 90% of patients with acute myeloid leukemia (AML), and its extracellular portion consists of a V domain and a C2 domain. A recent study showed that a single nucleotide polymorphism (SNP), rs12459419 (C > T), results in the reduced expression of V domain-containing CD33 and limited efficacy of V domain-binding anti-CD33 antibodies. We developed JNJ-67571244, a novel human bispecific antibody capable of binding to the C2 domain of CD33 and to CD3, to induce T-cell recruitment and CD33+ tumor cell cytotoxicity independently of their SNP genotype status. JNJ-67571244 specifically binds to CD33-expressing target cells and induces cytotoxicity of CD33+ AML cell lines in vitro along with T-cell activation and cytokine release. JNJ-67571244 also exhibited statistically significant antitumor activity in vivo in established disseminated and subcutaneous mouse models of human AML. Furthermore, this antibody depletes CD33+ blasts in AML patient blood samples with concurrent T-cell activation. JNJ-67571244 also cross-reacts with cynomolgus monkey CD33 and CD3, and dosing of JNJ-67571244 in cynomolgus monkeys resulted in T-cell activation, transient cytokine release, and sustained reduction in CD33+ leukocyte populations. JNJ-67571244 was well tolerated in cynomolgus monkeys up to 30 mg/kg. Lastly, JNJ-67571244 mediated efficient cytotoxicity of cell lines and primary samples regardless of their SNP genotype status, suggesting a potential therapeutic benefit over other V-binding antibodies. JNJ-67571244 is currently in phase 1 clinical trials in patients with relapsed/refractory AML and high-risk myelodysplastic syndrome.


Assuntos
Leucemia Mieloide Aguda , Linfócitos T , Animais , Domínios C2 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Macaca fascicularis , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Linfócitos T/metabolismo
15.
Blood ; 135(15): 1232-1243, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32040549

RESUMO

T-cell-mediated approaches have shown promise in myeloma treatment. However, there are currently a limited number of specific myeloma antigens that can be targeted, and multiple myeloma (MM) remains an incurable disease. G-protein-coupled receptor class 5 member D (GPRC5D) is expressed in MM and smoldering MM patient plasma cells. Here, we demonstrate that GPRC5D protein is present on the surface of MM cells and describe JNJ-64407564, a GPRC5DxCD3 bispecific antibody that recruits CD3+ T cells to GPRC5D+ MM cells and induces killing of GPRC5D+ cells. In vitro, JNJ-64407564 induced specific cytotoxicity of GPRC5D+ cells with concomitant T-cell activation and also killed plasma cells in MM patient samples ex vivo. JNJ-64407564 can recruit T cells and induce tumor regression in GPRC5D+ MM murine models, which coincide with T-cell infiltration at the tumor site. This antibody is also able to induce cytotoxicity of patient primary MM cells from bone marrow, which is the natural site of this disease. GPRC5D is a promising surface antigen for MM immunotherapy, and JNJ-64407564 is currently being evaluated in a phase 1 clinical trial in patients with relapsed or refractory MM (NCT03399799).


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Mieloma Múltiplo/terapia , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Humanos , Imunoterapia , Camundongos Endogâmicos BALB C , Mieloma Múltiplo/imunologia , Linfócitos T/imunologia
16.
Bioorg Med Chem Lett ; 29(23): 126743, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678006

RESUMO

We describe a series of potent and highly selective small-molecule MALT1 inhibitors, optimized from a High-Throughput Screening hit. Advanced analogues such as compound 40 show high potency (IC50: 0.01 µM) in a biochemical assay measuring MALT1 enzymatic activity, as well as in cellular assays: Jurkat T cell activation (0.05 µM) and IL6/10 secretion (IC50: 0.10/0.06 µM) in the TMD8 B-cell lymphoma line. Compound 40 also inhibited cleavage of the MALT1 substrate RelB (IC50: 0.10 µM). Mechanistic enzymology results suggest that these compounds bind to the known allosteric site of the protease.


Assuntos
Descoberta de Drogas/métodos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos
17.
MAbs ; 11(6): 1012-1024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242061

RESUMO

T cell redirection mediated by bispecific antibodies (BsAbs) is a promising cancer therapy. Dual antigen binding is necessary for potent T cell redirection and is influenced by the structural characteristics of a BsAb, which are dependent on its IgG subclass. In this study, model BsAbs targeting CD19xCD3 were generated in variants of IgG1, IgG2, and IgG4 carrying Fc mutations that reduce FcγR interaction, and two chimeric IgG subclasses termed IgG1:2 and IgG4:2, in which the IgG1- or IgG4-F(ab)2 are grafted on an IgG2 Fc. Molecules containing an IgG2 or IgG4-F(ab)2 domain were confirmed to be the most structurally compact molecules. All BsAbs were shown to bind both of their target proteins (and corresponding cells) equally well. However, CD19xCD3 IgG2 did not bind both antigens simultaneously as measured by the absence of cellular clustering of T cells with target cells. This translated to a reduced potency of IgG2 BsAbs in T-cell redirection assays. The activity of IgG2 BsAbs was fully restored in the chimeric subclasses IgG4:2 and IgG1:2. This confirmed the major contribution of the F(ab)2 region to the BsAb's functional activity and demonstrated that function of BsAbs can be modulated by engineering molecules combining different Fc and F(ab)2 domains. Abbreviations: ADCC: Antibody-dependent cellular cytotoxicity; AlphaScreenTM: Amplified Luminescent Proximity Homogeneous Assay Screening; ANOVA: Analysis of variance; BiTE: bispecific T-cell engager; BSA: bovine serum albumin; BsAb: bispecific antibody; cFAE: controlled Fab-arm exchange; CDC: complement-dependent cellular cytotoxicity; CIEX: cation-exchange; CIR: chimeric immune receptor; DPBS: Dulbecco's phosphate-buffered saline; EC50 value: effective concentration to reach half-maximum effect; EGFR: epidermal growth factor receptor; EI: expansion index (RAt=x/RAt=0); FACS: fluorescence-activated cell sorting; FVD: fixable viability dye; HI-HPLC: hydrophobic interaction HPLC; HI-FBS: heat-inactivated fetal bovine serum; HPLC: high-pressure liquid chromatography; IC50 value: effective concentration to reach half-maximum inhibition; IQ: Inhibition Quotient; IS: immunological synapse; MES: 2-(N-morpholino)ethanesulfonic acid; R-PE: recombinant phycoerythrin; RA: red area in µm2/well; RD: receptor density; RFP: red fluorescent protein; Rg: radius of gyration; RSV: respiratory syncytial virus; SAXS: small-angle x-ray scattering; scFv: single-chain variable fragment; SD: standard deviation; SPR: surface plasmon resonance; WT: wild-type.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos CD19/imunologia , Complexo CD3/imunologia , Imunoglobulina G/imunologia , Linfócitos T/imunologia , Anticorpos Biespecíficos/genética , Antígenos CD19/genética , Complexo CD3/genética , Linhagem Celular , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Mutação , Linfócitos T/citologia
18.
J Immunol ; 202(6): 1885-1894, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710044

RESUMO

Development of targeted cancer therapy requires a thorough understanding of mechanisms of tumorigenesis as well as mechanisms of action of therapeutics. This is challenging because by the time patients are diagnosed with cancer, early events of tumorigenesis have already taken place. Similarly, development of cancer immunotherapies is hampered by a lack of appropriate small animal models with autologous human tumor and immune system. In this article, we report the development of a mouse model of human acute myeloid leukemia (AML) with autologous immune system for studying early events of human leukemogenesis and testing the efficacy of immunotherapeutics. To develop such a model, human hematopoietic stem/progenitor cells (HSPC) are transduced with lentiviruses expressing a mutated form of nucleophosmin (NPM1), referred to as NPM1c. Following engraftment into immunodeficient mice, transduced HSPCs give rise to human myeloid leukemia, whereas untransduced HSPCs give rise to human immune cells in the same mice. The de novo AML, with CD123+ leukemic stem or initiating cells (LSC), resembles NPM1c+ AML from patients. Transcriptional analysis of LSC and leukemic cells confirms similarity of the de novo leukemia generated in mice with patient leukemia and suggests Myc as a co-operating factor in NPM1c-driven leukemogenesis. We show that a bispecific conjugate that binds both CD3 and CD123 eliminates CD123+ LSCs in a T cell-dependent manner both in vivo and in vitro. These results demonstrate the utility of the NPM1c+ AML model with an autologous immune system for studying early events of human leukemogenesis and for evaluating efficacy and mechanism of immunotherapeutics.


Assuntos
Carcinogênese , Leucemia Mieloide , Proteínas Nucleares , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nucleofosmina
19.
Cancer Cell ; 34(4): 674-689.e8, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30245083

RESUMO

Intra-tumor heterogeneity caused by clonal evolution is a major problem in cancer treatment. To address this problem, we performed label-free quantitative proteomics on primary acute myeloid leukemia (AML) samples. We identified 50 leukemia-enriched plasma membrane proteins enabling the prospective isolation of genetically distinct subclones from individual AML patients. Subclones differed in their regulatory phenotype, drug sensitivity, growth, and engraftment behavior, as determined by RNA sequencing, DNase I hypersensitive site mapping, transcription factor occupancy analysis, in vitro culture, and xenograft transplantation. Finally, we show that these markers can be used to identify and longitudinally track distinct leukemic clones in patients in routine diagnostics. Our study describes a strategy for a major improvement in stratifying cancer diagnosis and treatment.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação/genética , Fenótipo , Fatores de Transcrição/genética , Adulto , Idoso , Sequência de Bases/genética , Evolução Clonal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tirosina Quinase 3 Semelhante a fms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA