Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35276943

RESUMO

Nutritional habits can have a significant impact on cardiovascular health and disease. This may also apply to cardiotoxicity caused as a frequent side effect of chemotherapeutic drugs, such as doxorubicin (DXR). The aim of this work was to analyze if diet, in particular creatine (Cr) supplementation, can modulate cardiac biochemical (energy status, oxidative damage and antioxidant capacity, DNA integrity, cell signaling) and functional parameters at baseline and upon DXR treatment. Here, male Wistar rats were fed for 4 weeks with either standard rodent diet (NORMAL), soy-based diet (SOY), or Cr-supplemented soy-based diet (SOY + Cr). Hearts were either freeze-clamped in situ or following ex vivo Langendorff perfusion without or with 25 µM DXR and after recording cardiac function. The diets had distinct cardiac effects. Soy-based diet (SOY vs. NORMAL) did not alter cardiac performance but increased phosphorylation of acetyl-CoA carboxylase (ACC), indicating activation of rather pro-catabolic AMP-activated protein kinase (AMPK) signaling, consistent with increased ADP/ATP ratios and lower lipid peroxidation. Creatine addition to the soy-based diet (SOY + Cr vs. SOY) slightly increased left ventricular developed pressure (LVDP) and contractility dp/dt, as measured at baseline in perfused heart, and resulted in activation of the rather pro-anabolic protein kinases Akt and ERK. Challenging perfused heart with DXR, as analyzed across all nutritional regimens, deteriorated most cardiac functional parameters and also altered activation of the AMPK, ERK, and Akt signaling pathways. Despite partial reprogramming of cell signaling and metabolism in the rat heart, diet did not modify the functional response to supraclinical DXR concentrations in the used acute cardiotoxicity model. However, the long-term effect of these diets on cardiac sensitivity to chronic and clinically relevant DXR doses remains to be established.


Assuntos
Creatina , Doxorrubicina , Animais , Creatina/farmacologia , Dieta , Doxorrubicina/toxicidade , Masculino , Ratos , Ratos Wistar , Transdução de Sinais
2.
Cell Biosci ; 11(1): 195, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789336

RESUMO

BACKGROUND: NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. RESULTS: We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. CONCLUSIONS: NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins.

3.
BMC Biol ; 19(1): 228, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674701

RESUMO

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Assuntos
Neoplasias , Núcleosídeo-Difosfato Quinase , Animais , Membranas Intracelulares , Camundongos , Mitocôndrias , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo
4.
Antivir Ther ; 18(2): 193-204, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22894916

RESUMO

BACKGROUND: Ubiquitous mitochondrial creatine kinase (uMtCK) accumulates as macroenzyme creatine kinase type 2 (macro CK2) in the serum of HIV-infected patients under a tenofovir disoproxil fumarate (TDF)-containing antiretroviral regimen. The genesis and clinical significance of this finding is unclear. METHODS: A prospective observational 5-year follow-up study was performed on those patients in which macro CK2 appearance was initially described ('TDF switch study' cohort). In addition, tenofovir (TFV), its prodrug TDF and its active, intracellular derivative TFV diphosphate (TDP) were tested in vitro for their effects on different key properties of uMtCK to clarify possible interactions of uMtCK with TFV compounds. RESULTS: In just under 5 years of continuous TDF treatment, only 4/12 (33%) patients remained macro CK2-positive, whereas 8/12 (66%) originally positive patients were macro CK2-negative at the end of follow-up. Prospective clinical follow-up data indicate that macro CK2 appearance under TDF is not associated with significant cell damage or occurrence of malignancies. A trend towards grade 1 hypophosphataemia suggests subclinical proximal tubular dysfunction in macro-CK2-positive patients, although it was not associated with a significant decrease in estimated glomerular filtration rate. In vitro, TFV, TDF and TDP did not interfere with uMtCK enzyme activity as competitive inhibitors or pseudo-substrates, but TFV and TDF stabilized the native uMtCK octameric structure in dilute solutions. CONCLUSIONS: Appearance of octameric uMtCK as macro CK2 in the serum of TDF-treated patients is suggested to result from a combination of low-level mitochondrial damage caused by subclinical renal tubular dysfunction together with possible compensatory uMtCK overexpression and a putative concomitant stabilization of uMtCK octamers by higher levels of TFV in proximal tubules.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/farmacologia , Creatina Quinase Mitocondrial/metabolismo , Infecções por HIV/metabolismo , Organofosfonatos/farmacologia , Multimerização Proteica , Adenina/farmacologia , Adenina/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Catálise/efeitos dos fármacos , Creatina Quinase Mitocondrial/sangue , Creatina Quinase Mitocondrial/química , Estabilidade Enzimática , Seguimentos , Taxa de Filtração Glomerular/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Humanos , Hipofosfatemia/sangue , Organofosfonatos/uso terapêutico , Multimerização Proteica/efeitos dos fármacos , Tenofovir
5.
J Mol Neurosci ; 34(1): 77-87, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18040888

RESUMO

Oxidative damage has been reported to be involved in the pathogenesis of diabetic neuropathy and neurodegenerative diseases. Recent evidence suggests that the antidiabetic drug metformin prevents oxidative stress-related cellular death in non-neuronal cell lines. In this report, we point to the direct neuroprotective effect of metformin, using the etoposide-induced cell death model. The exposure of intact primary neurons to this cytotoxic insult induced permeability transition pore (PTP) opening, the dissipation of mitochondrial membrane potential (DeltaPsim), cytochrome c release, and subsequent death. More importantly, metformin, together with the PTP classical inhibitor cyclosporin A (CsA), strongly mitigated the activation of this apoptotic cascade. Furthermore, the general antioxidant N-acetyl-L: -cysteine also prevented etoposide-promoted neuronal death. In addition, metformin was shown to delay CsA-sensitive PTP opening in permeabilized neurons, as triggered by a calcium overload, probably through its mild inhibitory effect on the respiratory chain complex I. We conclude that (1) etoposide-induced neuronal death is partly attributable to PTP opening and the disruption of DeltaPsim, in association with the emergence of oxidative stress, and (2) metformin inhibits this PTP opening-driven commitment to death. We thus propose that metformin, beyond its antihyperglycemic role, can also function as a new therapeutic tool for diabetes-associated neurodegenerative disorders.


Assuntos
Apoptose/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Metformina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Ciclosporina/farmacologia , Citocromos c/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Inibidores Enzimáticos/farmacologia , Etoposídeo/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Metformina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA