Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(2): e0148680, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863614

RESUMO

Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.


Assuntos
Mutação , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Adulto , Idade de Início , Alelos , Antígenos Nucleares/análise , Proteínas de Ciclo Celular , Células Cultivadas , Complexo Dinactina , Dineínas/análise , Genes Dominantes , Células-Tronco Embrionárias Humanas/citologia , Humanos , Proteína Huntingtina , Proteínas Associadas aos Microtúbulos/análise , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/ultraestrutura , Proteínas Associadas à Matriz Nuclear/análise , Peptídeos/análise , Células-Tronco Pluripotentes/citologia , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Fuso Acromático/ultraestrutura , Frações Subcelulares/química , Expansão das Repetições de Trinucleotídeos
2.
J Clin Invest ; 122(2): 569-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22269325

RESUMO

Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. Neural derivatives of human embryonic stem cells (hESCs) are currently being used for cell therapy in 3 clinical trials. However, hESCs are prone to genomic instability, which could limit their clinical utility. Here, we report that neural differentiation of hESCs systematically produced a neural stem cell population that could be propagated for more than 50 passages without entering senescence; this was true for all 6 hESC lines tested. The apparent spontaneous loss of evolution toward normal senescence of somatic cells was associated with a jumping translocation of chromosome 1q. This chromosomal defect has previously been associated with hematologic malignancies and pediatric brain tumors with poor clinical outcome. Neural stem cells carrying the 1q defect implanted into the brains of rats failed to integrate and expand, whereas normal cells engrafted. Our results call for additional quality controls to be implemented to ensure genomic integrity not only of undifferentiated pluripotent stem cells, but also of hESC derivatives that form cell therapy end products, particularly neural lines.


Assuntos
Diferenciação Celular/fisiologia , Cromossomos Humanos Par 1/genética , Células-Tronco Embrionárias/fisiologia , Instabilidade Genômica , Animais , Técnicas de Cultura de Células , Linhagem Celular , Ensaios Clínicos como Assunto , Células-Tronco Embrionárias/citologia , Humanos , Cariotipagem , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Ratos
3.
Physiol Genomics ; 43(2): 77-86, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21081659

RESUMO

Mesenchymal stem cells (MSCs) are present in a wide variety of tissues during development of the human embryo starting as early as the first trimester. Gene expression profiling of these cells has focused primarily on the molecular signs characterizing their potential heterogeneity and their differentiation potential. In contrast, molecular mechanisms participating in the emergence of MSC identity in embryo are still poorly understood. In this study, human embryonic stem cells (hESs) were differentiated toward MSCs (ES-MSCs) to compare the genetic patterns between pluripotent hESs and multipotent MSCs by a large genomewide expression profiling of mRNAs and microRNAs (miRNAs). After whole genome differential transcriptomic analysis, a stringent protocol was used to search for genes differentially expressed between hESs and ES-MSCs, followed by several validation steps to identify the genes most specifically linked to the MSC phenotype. A network was obtained that encompassed 74 genes in 13 interconnected transcriptional systems that are likely to contribute to MSC identity. Pairs of negatively correlated miRNAs and mRNAs, which suggest miRNA-target relationships, were then extracted and validation was sought with the use of Pre-miRs. We report here that underexpression of miR-148a and miR-20b in ES-MSCs, compared with ESs, allows an increase in expression of the EPAS1 (Endothelial PAS domain 1) transcription factor that results in the expression of markers of the MSC phenotype specification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Dados de Sequência Molecular , Fenótipo , RNA Mensageiro/metabolismo , Transcrição Gênica , Regulação para Cima/genética
4.
Nat Genet ; 39(6): 776-80, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486094

RESUMO

Mitochondrial DNA (mtDNA) depletion syndrome (MDS; MIM 251880) is a prevalent cause of oxidative phosphorylation disorders characterized by a reduction in mtDNA copy number. The hitherto recognized disease mechanisms alter either mtDNA replication (POLG (ref. 1)) or the salvage pathway of mitochondrial deoxyribonucleosides 5'-triphosphates (dNTPs) for mtDNA synthesis (DGUOK (ref. 2), TK2 (ref. 3) and SUCLA2 (ref. 4)). A last gene, MPV17 (ref. 5), has no known function. Yet the majority of cases remain unexplained. Studying seven cases of profound mtDNA depletion (1-2% residual mtDNA in muscle) in four unrelated families, we have found nonsense, missense and splice-site mutations and in-frame deletions of the RRM2B gene, encoding the cytosolic p53-inducible ribonucleotide reductase small subunit. Accordingly, severe mtDNA depletion was found in various tissues of the Rrm2b-/- mouse. The mtDNA depletion triggered by p53R2 alterations in both human and mouse implies that p53R2 has a crucial role in dNTP supply for mtDNA synthesis.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Mitocondrial/genética , Deleção de Genes , Doenças Mitocondriais/etiologia , Mutação/genética , Ribonucleotídeo Redutases/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Análise Mutacional de DNA , Feminino , Fibroblastos , Homozigoto , Humanos , Recém-Nascido , Escore Lod , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares , Doenças Mitocondriais/patologia , Dados de Sequência Molecular , Linhagem , Ribonucleotídeo Redutases/fisiologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA