Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Vet Sci ; 11(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38922025

RESUMO

The integration of deep learning-based tools into diagnostic workflows is increasingly prevalent due to their efficiency and reproducibility in various settings. We investigated the utility of automated nuclear morphometry for assessing nuclear pleomorphism (NP), a criterion of malignancy in the current grading system in canine pulmonary carcinoma (cPC), and its prognostic implications. We developed a deep learning-based algorithm for evaluating NP (variation in size, i.e., anisokaryosis and/or shape) using a segmentation model. Its performance was evaluated on 46 cPC cases with comprehensive follow-up data regarding its accuracy in nuclear segmentation and its prognostic ability. Its assessment of NP was compared to manual morphometry and established prognostic tests (pathologists' NP estimates (n = 11), mitotic count, histological grading, and TNM-stage). The standard deviation (SD) of the nuclear area, indicative of anisokaryosis, exhibited good discriminatory ability for tumor-specific survival, with an area under the curve (AUC) of 0.80 and a hazard ratio (HR) of 3.38. The algorithm achieved values comparable to manual morphometry. In contrast, the pathologists' estimates of anisokaryosis resulted in HR values ranging from 0.86 to 34.8, with slight inter-observer reproducibility (k = 0.204). Other conventional tests had no significant prognostic value in our study cohort. Fully automated morphometry promises a time-efficient and reproducible assessment of NP with a high prognostic value. Further refinement of the algorithm, particularly to address undersegmentation, and application to a larger study population are required.

2.
Laryngoscope ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761157

RESUMO

OBJECTIVE: Confocal laser endomicroscopy (CLE) is an optical imaging technique that allows in vivo, real-time, microscope-like assessment of superficial lesions. Although there is substantial data on CLE use in the upper GI tract, there is limited information regarding its application in the nasal cavity and paranasal sinuses. This study aims to assess the feasibility and diagnostic metrics of CLE in the nasal cavity and paranasal sinuses regarding differentiation between healthy/benign and malignant tissue. These structures show, however, a wider variety of frequent and concomitant benign and malignant pathologies, which could pose an increased challenge for optical biopsy by CLE. METHODS: We performed CLE on a case series of six patients with various findings in the nose (three chronic rhinosinusitis, adenocarcinoma, meningoenzephalozele, esthesionneuroblastoma). Forty-two sequences (3792 images) from various structures in the nasal cavity and/or paranasal sinuses were acquired. Biopsies were taken at corresponding locations and analyzed in hematoxylin and eosin staining as a standard of reference. Three independent examiners blinded to the histopathology assessed the sequences. RESULTS: Healthy and inflamed mucosa could be distinguished from malignant lesions with an accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 84.1%, 85.4%, 83.1%, 72.5%, and 92.1%, respectively, with a substantial agreement between raters (Fleiss κ = 0.62). CONCLUSION: This technique shows, despite its limitations, potential as an adjunctive imaging technique during sinus surgery; however, the creation of a scoring system based on reproducible and defined characteristics in a larger more diverse population should be the focus of further research to improve its diagnostic value and clinical utility. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

3.
Clin Oral Investig ; 28(5): 266, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652317

RESUMO

OBJECTIVES: Confocal laser endomicroscopy (CLE) is an optical method that enables microscopic visualization of oral mucosa. Previous studies have shown that it is possible to differentiate between physiological and malignant oral mucosa. However, differences in mucosal architecture were not taken into account. The objective was to map the different oral mucosal morphologies and to establish a "CLE map" of physiological mucosa as baseline for further application of this powerful technology. MATERIALS AND METHODS: The CLE database consisted of 27 patients. The following spots were examined: (1) upper lip (intraoral) (2) alveolar ridge (3) lateral tongue (4) floor of the mouth (5) hard palate (6) intercalary line. All sequences were examined by two CLE experts for morphological differences and video quality. RESULTS: Analysis revealed clear differences in image quality and possibility of depicting tissue morphologies between the various localizations of oral mucosa: imaging of the alveolar ridge and hard palate showed visually most discriminative tissue morphology. Labial mucosa was also visualized well using CLE. Here, typical morphological features such as uniform cells with regular intercellular gaps and vessels could be clearly depicted. Image generation and evaluation was particularly difficult in the area of the buccal mucosa, the lateral tongue and the floor of the mouth. CONCLUSION: A physiological "CLE map" for the entire oral cavity could be created for the first time. CLINICAL RELEVANCE: This will make it possible to take into account the existing physiological morphological features when differentiating between normal mucosa and oral squamous cell carcinoma in future work.


Assuntos
Microscopia Confocal , Mucosa Bucal , Humanos , Microscopia Confocal/métodos , Mucosa Bucal/diagnóstico por imagem , Mucosa Bucal/citologia , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Neoplasias Bucais/diagnóstico por imagem
4.
Med Image Anal ; 94: 103155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537415

RESUMO

Recognition of mitotic figures in histologic tumor specimens is highly relevant to patient outcome assessment. This task is challenging for algorithms and human experts alike, with deterioration of algorithmic performance under shifts in image representations. Considerable covariate shifts occur when assessment is performed on different tumor types, images are acquired using different digitization devices, or specimens are produced in different laboratories. This observation motivated the inception of the 2022 challenge on MItosis Domain Generalization (MIDOG 2022). The challenge provided annotated histologic tumor images from six different domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains. Ground truth for mitotic figure detection was established in two ways: a three-expert majority vote and an independent, immunohistochemistry-assisted set of labels. This work represents an overview of the challenge tasks, the algorithmic strategies employed by the participants, and potential factors contributing to their success. With an F1 score of 0.764 for the top-performing team, we summarize that domain generalization across various tumor domains is possible with today's deep learning-based recognition pipelines. However, we also found that domain characteristics not present in the training set (feline as new species, spindle cell shape as new morphology and a new scanner) led to small but significant decreases in performance. When assessed against the immunohistochemistry-assisted reference standard, all methods resulted in reduced recall scores, with only minor changes in the order of participants in the ranking.


Assuntos
Laboratórios , Mitose , Humanos , Animais , Gatos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Padrões de Referência
5.
Eur Arch Otorhinolaryngol ; 281(4): 2115-2122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329525

RESUMO

PURPOSE: Confocal Laser Endomicroscopy (CLE) is an imaging tool, that has demonstrated potential for intraoperative, real-time, non-invasive, microscopical assessment of surgical margins of oropharyngeal squamous cell carcinoma (OPSCC). However, interpreting CLE images remains challenging. This study investigates the application of OpenAI's Generative Pretrained Transformer (GPT) 4.0 with Vision capabilities for automated classification of CLE images in OPSCC. METHODS: CLE Images of histological confirmed SCC or healthy mucosa from a database of 12 809 CLE images from 5 patients with OPSCC were retrieved and anonymized. Using a training data set of 16 images, a validation set of 139 images, comprising SCC (83 images, 59.7%) and healthy normal mucosa (56 images, 40.3%) was classified using the application programming interface (API) of GPT4.0. The same set of images was also classified by CLE experts (two surgeons and one pathologist), who were blinded to the histology. Diagnostic metrics, the reliability of GPT and inter-rater reliability were assessed. RESULTS: Overall accuracy of the GPT model was 71.2%, the intra-rater agreement was κ = 0.837, indicating an almost perfect agreement across the three runs of GPT-generated results. Human experts achieved an accuracy of 88.5% with a substantial level of agreement (κ = 0.773). CONCLUSIONS: Though limited to a specific clinical framework, patient and image set, this study sheds light on some previously unexplored diagnostic capabilities of large language models using few-shot prompting. It suggests the model`s ability to extrapolate information and classify CLE images with minimal example data. Whether future versions of the model can achieve clinically relevant diagnostic accuracy, especially in uncurated data sets, remains to be investigated.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Reprodutibilidade dos Testes , Microscopia Confocal/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Lasers
6.
Sci Rep ; 13(1): 19436, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945699

RESUMO

Histopathological examination of tissue samples is essential for identifying tumor malignancy and the diagnosis of different types of tumor. In the case of lymphoma classification, nuclear size of the neoplastic lymphocytes is one of the key features to differentiate the different subtypes. Based on the combination of artificial intelligence and advanced image processing, we provide a workflow for the classification of lymphoma with regards to their nuclear size (small, intermediate, and large). As the baseline for our workflow testing, we use a Unet++ model trained on histological images of canine lymphoma with individually labeled nuclei. As an alternative to the Unet++, we also used a publicly available pre-trained and unmodified instance segmentation model called Stardist to demonstrate that our modular classification workflow can be combined with different types of segmentation models if they can provide proper nuclei segmentation. Subsequent to nuclear segmentation, we optimize algorithmic parameters for accurate classification of nuclear size using a newly derived reference size and final image classification based on a pathologists-derived ground truth. Our image classification module achieves a classification accuracy of up to 92% on canine lymphoma data. Compared to the accuracy ranging from 66.67 to 84% achieved using measurements provided by three individual pathologists, our algorithm provides a higher accuracy level and reproducible results. Our workflow also demonstrates a high transferability to feline lymphoma, as shown by its accuracy of up to 84.21%, even though our workflow was not optimized for feline lymphoma images. By determining the nuclear size distribution in tumor areas, our workflow can assist pathologists in subtyping lymphoma based on the nuclei size and potentially improve reproducibility. Our proposed approach is modular and comprehensible, thus allowing adaptation for specific tasks and increasing the users' trust in computer-assisted image classification.


Assuntos
Doenças do Gato , Aprendizado Profundo , Doenças do Cão , Linfoma , Animais , Cães , Gatos , Inteligência Artificial , Reprodutibilidade dos Testes , Doenças do Gato/diagnóstico por imagem , Doenças do Cão/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Linfoma/diagnóstico por imagem , Linfoma/veterinária
7.
Sci Data ; 10(1): 484, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491536

RESUMO

The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species.


Assuntos
Mitose , Neoplasias , Humanos , Algoritmos , Prognóstico , Neoplasias/patologia
8.
Vet Pathol ; 60(6): 865-875, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515411

RESUMO

Microscopic evaluation of hematoxylin and eosin-stained slides is still the diagnostic gold standard for a variety of diseases, including neoplasms. Nevertheless, intra- and interrater variability are well documented among pathologists. So far, computer assistance via automated image analysis has shown potential to support pathologists in improving accuracy and reproducibility of quantitative tasks. In this proof of principle study, we describe a machine-learning-based algorithm for the automated diagnosis of 7 of the most common canine skin tumors: trichoblastoma, squamous cell carcinoma, peripheral nerve sheath tumor, melanoma, histiocytoma, mast cell tumor, and plasmacytoma. We selected, digitized, and annotated 350 hematoxylin and eosin-stained slides (50 per tumor type) to create a database divided into training, n = 245 whole-slide images (WSIs), validation (n = 35 WSIs), and test sets (n = 70 WSIs). Full annotations included the 7 tumor classes and 6 normal skin structures. The data set was used to train a convolutional neural network (CNN) for the automatic segmentation of tumor and nontumor classes. Subsequently, the detected tumor regions were classified patch-wise into 1 of the 7 tumor classes. A majority of patches-approach led to a tumor classification accuracy of the network on the slide-level of 95% (133/140 WSIs), with a patch-level precision of 85%. The same 140 WSIs were provided to 6 experienced pathologists for diagnosis, who achieved a similar slide-level accuracy of 98% (137/140 correct majority votes). Our results highlight the feasibility of artificial intelligence-based methods as a support tool in diagnostic oncologic pathology with future applications in other species and tumor types.


Assuntos
Aprendizado Profundo , Doenças do Cão , Neoplasias Cutâneas , Animais , Cães , Inteligência Artificial , Amarelo de Eosina-(YS) , Hematoxilina , Reprodutibilidade dos Testes , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/veterinária , Aprendizado de Máquina , Doenças do Cão/diagnóstico
9.
J Pathol Inform ; 14: 100301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994311

RESUMO

The success of immuno-oncology treatments promises long-term cancer remission for an increasing number of patients. The response to checkpoint inhibitor drugs has shown a correlation with the presence of immune cells in the tumor and tumor microenvironment. An in-depth understanding of the spatial localization of immune cells is therefore critical for understanding the tumor's immune landscape and predicting drug response. Computer-aided systems are well suited for efficiently quantifying immune cells in their spatial context. Conventional image analysis approaches are often based on color features and therefore require a high level of manual interaction. More robust image analysis methods based on deep learning are expected to decrease this reliance on human interaction and improve the reproducibility of immune cell scoring. However, these methods require sufficient training data and previous work has reported low robustness of these algorithms when they are tested on out-of-distribution data from different pathology labs or samples from different organs. In this work, we used a new image analysis pipeline to explicitly evaluate the robustness of marker-labeled lymphocyte quantification algorithms depending on the number of training samples before and after being transferred to a new tumor indication. For these experiments, we adapted the RetinaNet architecture for the task of T-lymphocyte detection and employed transfer learning to bridge the domain gap between tumor indications and reduce the annotation costs for unseen domains. On our test set, we achieved human-level performance for almost all tumor indications with an average precision of 0.74 in-domain and 0.72-0.74 cross-domain. From our results, we derive recommendations for model development regarding annotation extent, training sample selection, and label extraction for the development of robust algorithms for immune cell scoring. By extending the task of marker-labeled lymphocyte quantification to a multi-class detection task, the pre-requisite for subsequent analyses, e.g., distinguishing lymphocytes in the tumor stroma from tumor-infiltrating lymphocytes, is met.

11.
Med Image Anal ; 84: 102699, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463832

RESUMO

The density of mitotic figures (MF) within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of MF by pathologists is subject to a strong inter-rater bias, limiting its prognostic value. State-of-the-art deep learning methods can support experts but have been observed to strongly deteriorate when applied in a different clinical environment. The variability caused by using different whole slide scanners has been identified as one decisive component in the underlying domain shift. The goal of the MICCAI MIDOG 2021 challenge was the creation of scanner-agnostic MF detection algorithms. The challenge used a training set of 200 cases, split across four scanning systems. As test set, an additional 100 cases split across four scanning systems, including two previously unseen scanners, were provided. In this paper, we evaluate and compare the approaches that were submitted to the challenge and identify methodological factors contributing to better performance. The winning algorithm yielded an F1 score of 0.748 (CI95: 0.704-0.781), exceeding the performance of six experts on the same task.


Assuntos
Algoritmos , Mitose , Humanos , Gradação de Tumores , Prognóstico
12.
Braz. j. otorhinolaryngol. (Impr.) ; 88(supl.4): S26-S32, Nov.-Dec. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420864

RESUMO

Abstract Introduction: Confocal laser endomicroscopy is an optical imaging technique that allows in vivo, real-time, microscope-like images of the upper aerodigestive tract's mucosa. The assessment of morphological tissue characteristics for the correct differentiation between healthy and malignant suspected mucosa requires strict evaluation criteria. Objective: This study aims to validate an eight-point score for the correct assessment of malignancy. Methods: We performed confocal laser endomicroscopy between March and October 2020 in 13 patients. 197 sequences (11.820 images) originated from the marginal area of pharyngeal and laryngeal carcinomas. Specimens were taken at corresponding locations and analyzed in H&E staining as a standard of reference. A total of six examiners evaluated the sequences based on a scoring system; they were blinded to the histopathological examination. The primary endpoints are sensitivity, specificity, and accuracy. Secondary endpoints are interrater reliability and receiver operator characteristics. Results: Healthy mucosa showed epithelium with uniform size and shape with distinct cytoplasmic membranes and regular vessel architecture. Confocal laser endomicroscopy of malignant cells demonstrated a disorganized arrangement of variable cellular morphology. We calculated an accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 83.2%, 81.3%, 85.5%, 86.7%, and 79.7%, respectively, with a κ-value of 0.64, and an area under the curve of 0.86. Conclusion: The results confirm that this scoring system is applicable in the laryngeal and pharyngeal mucosa to classify benign and malignant tissue. A scoring system based on defined and reproducible characteristics can help translate this experimental method to broad clinical practice in head and neck diagnosis.

13.
Sci Data ; 9(1): 588, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167846

RESUMO

Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application.


Assuntos
Doenças do Cão , Redes Neurais de Computação , Neoplasias Cutâneas , Algoritmos , Animais , Doenças do Cão/patologia , Cães , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/veterinária
14.
Acta Otorhinolaryngol Ital ; 42(1): 26-33, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35129541

RESUMO

OBJECTIVE: Development and validation of a confocal laser endomicroscopy (CLE) classification score for the larynx and pharynx. METHODS: Thirteen patients (154 video sequences, 9240 images) with laryngeal or pharyngeal SCC were included in this prospective study between October 2020 and February 2021. Each CLE sequence was correlated with the gold standard of histopathological examination. Based on a dataset of 94 video sequences (5640 images), a scoring system was developed. In the remaining 60 sequences (3600 images), the score was validated by four CLE experts and four head and neck surgeons who were not familiar with CLE. RESULTS: Tissue homogeneity, cell size, borders and clusters, capillary loops and the nucleus/cytoplasm ratio were defined as the scoring criteria. Using this score, the CLE experts obtained an accuracy, sensitivity, and specificity of 90.8%, 95.1%, and 86.4%, respectively, and the CLE non-experts of 86.2%, 86.4%, and 86.1%. Interobserver agreement Fleiss' kappa was 0.8 and 0.6, respectively. CONCLUSIONS: CLE can be reliably evaluated based on defined and reproducible imaging features, which demonstrate a high diagnostic value. CLE can be easily integrated into the intraoperative setting and generate real-time, in-vivo microscopic images to demarcate malignant changes.


Assuntos
Laringe , Faringe , Humanos , Laringe/diagnóstico por imagem , Lasers , Microscopia Confocal/métodos , Estudos Prospectivos
15.
Eur Arch Otorhinolaryngol ; 279(8): 4147-4156, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35226181

RESUMO

PURPOSE: Confocal laser endomicroscopy (CLE) allows imaging of the laryngeal mucosa in a thousand-fold magnification. This study analyzes differences in tissue homogeneity between healthy mucosa and squamous cell carcinoma (SCC) via CLE. MATERIALS AND METHODS: We included five SCC patients with planned total laryngectomy in this study between October 2020 and February 2021. We captured CLE scans of the tumor and healthy mucosa. Analysis of image homogeneity to diagnose SCC was performed by measuring the signal intensity in four regions of interest (ROI) in each frame in a total of 60 sequences. Each sequence was assigned to the corresponding histological pattern, derived from hematoxylin and eosin staining. In addition, we recorded the subjective evaluation of seven investigators regarding tissue homogeneity. RESULTS: Out of 3600 images, 1620 (45%) correlated with benign mucosa and 1980 (55%) with SCC. ROIs of benign mucosa and SCC had a mean and standard deviation (SD) of signal intensity of, respectively, 232.1 ± 3.34 and 467.3 ± 9.72 (P < 0.001). The mean SD between the four different ROIs was 39.1 ± 1.03 for benign and 101.5 ± 2.6 for SCC frames (P < 0.001). In addition, homogeneity yielded a sensitivity and specificity of 81.8% and 86.2%, respectively, regarding the investigator-dependent analysis. CONCLUSIONS: SCC shows a significant tissue inhomogeneity in comparison to the healthy epithelium. The results support this feature's importance in identifying malignant mucosa areas during CLE examination. However, the examiner-dependent evaluation emphasizes that homogeneity is a sub-criterion that must be considered in a broad context.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Humanos , Lasers , Microscopia Confocal/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço
16.
Vet Pathol ; 59(2): 211-226, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34965805

RESUMO

The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs.


Assuntos
Aprendizado Profundo , Algoritmos , Animais , Inteligência Artificial , Cães , Humanos , Patologistas , Reprodutibilidade dos Testes
17.
Braz J Otorhinolaryngol ; 88 Suppl 4: S26-S32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348858

RESUMO

INTRODUCTION: Confocal laser endomicroscopy is an optical imaging technique that allows in vivo, real-time, microscope-like images of the upper aerodigestive tract's mucosa. The assessment of morphological tissue characteristics for the correct differentiation between healthy and malignant suspected mucosa requires strict evaluation criteria. OBJECTIVE: This study aims to validate an eight-point score for the correct assessment of malignancy. METHODS: We performed confocal laser endomicroscopy between March and October 2020 in 13 patients. 197 sequences (11.820 images) originated from the marginal area of pharyngeal and laryngeal carcinomas. Specimens were taken at corresponding locations and analyzed in H&E staining as a standard of reference. A total of six examiners evaluated the sequences based on a scoring system; they were blinded to the histopathological examination. The primary endpoints are sensitivity, specificity, and accuracy. Secondary endpoints are interrater reliability and receiver operator characteristics. RESULTS: Healthy mucosa showed epithelium with uniform size and shape with distinct cytoplasmic membranes and regular vessel architecture. Confocal laser endomicroscopy of malignant cells demonstrated a disorganized arrangement of variable cellular morphology. We calculated an accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 83.2%, 81.3%, 85.5%, 86.7%, and 79.7%, respectively, with a κ-value of 0.64, and an area under the curve of 0.86. CONCLUSION: The results confirm that this scoring system is applicable in the laryngeal and pharyngeal mucosa to classify benign and malignant tissue. A scoring system based on defined and reproducible characteristics can help translate this experimental method to broad clinical practice in head and neck diagnosis.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Faríngeas , Humanos , Microscopia Confocal/métodos , Reprodutibilidade dos Testes , Neoplasias Faríngeas/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Lasers
18.
Eur Arch Otorhinolaryngol ; 279(4): 2029-2037, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34185145

RESUMO

PURPOSE: Confocal laser endomicroscopy (CLE) allows surface imaging of the laryngeal and pharyngeal mucosa in vivo at a thousand-fold magnification. This study aims to compare irregular blood vessels and intraepithelial capillary loops in healthy mucosa and squamous cell carcinoma (SCC) via CLE. MATERIALS AND METHODS: We included ten patients with confirmed SCC and planned total laryngectomy in this study between March 2020 and February 2021. CLE images of these patients were collected and compared with the corresponding histology in hematoxylin and eosin staining. We analyzed the characteristic endomicroscopic patterns of blood vessels and intraepithelial capillary loops for the diagnosis of SCC. RESULTS: In a total of 54 sequences, we identified 243 blood vessels which were analyzed regarding structure, diameter, and Fluorescein leakage, confirming that irregular, corkscrew-like vessels (24.4% vs. 1.3%; P < .001), dilated intraepithelial capillary loops (90.8% vs. 28.7%; P < .001), and increased capillary leakage (40.7% vs. 2.5%; P < .001), are significantly more frequently detected in SCC compared to the healthy epithelium. We defined a vessel diameter of 30 µm in capillary loops as a cut-off value, obtaining a sensitivity, specificity, PPV, and NPV and accuracy of 90.6%, 71.3%, 57.4%, 94.7%, and 77.1%, respectively, for the detection of malignancy based solely on capillary architecture. CONCLUSION: Capillaries within malignant lesions are fundamentally different from those in healthy mucosa regions. The capillary architecture is a significant feature aiding the identification of malignant mucosa areas during in-vivo, real-time CLE examination.


Assuntos
Capilares , Neoplasias de Cabeça e Pescoço , Capilares/diagnóstico por imagem , Humanos , Lasers , Microscopia Confocal/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço
19.
Vet Pathol ; 58(5): 766-794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282984

RESUMO

Standardization of tumor assessment lays the foundation for validation of grading systems, permits reproducibility of oncologic studies among investigators, and increases confidence in the significance of study results. Currently, there is minimal methodological standardization for assessing tumors in veterinary medicine, with few attempts to validate published protocols and grading schemes. The current article attempts to address these shortcomings by providing standard guidelines for tumor assessment parameters and protocols for evaluating specific tumor types. More detailed information is available in the Supplemental Files, the intention of which is 2-fold: publication as part of this commentary, but more importantly, these will be available as "living documents" on a website (www.vetcancerprotocols.org), which will be updated as new information is presented in the peer-reviewed literature. Our hope is that veterinary pathologists will agree that this initiative is needed, and will contribute to and utilize this information for routine diagnostic work and oncologic studies. Journal editors and reviewers can utilize checklists to ensure publications include sufficient detail and standardized methods of tumor assessment. To maintain the relevance of the guidelines and protocols, it is critical that the information is periodically updated and revised as new studies are published and validated with the intent of providing a repository of this information. Our hope is that this initiative (a continuation of efforts published in this journal in 2011) will facilitate collaboration and reproducibility between pathologists and institutions, increase case numbers, and strengthen clinical research findings, thus ensuring continued progress in veterinary oncologic pathology and improving patient care.


Assuntos
Neoplasias , Patologia Veterinária , Animais , Neoplasias/diagnóstico , Neoplasias/veterinária , Reprodutibilidade dos Testes
20.
Sci Rep ; 11(1): 4343, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623058

RESUMO

In many research areas, scientific progress is accelerated by multidisciplinary access to image data and their interdisciplinary annotation. However, keeping track of these annotations to ensure a high-quality multi-purpose data set is a challenging and labour intensive task. We developed the open-source online platform EXACT (EXpert Algorithm Collaboration Tool) that enables the collaborative interdisciplinary analysis of images from different domains online and offline. EXACT supports multi-gigapixel medical whole slide images as well as image series with thousands of images. The software utilises a flexible plugin system that can be adapted to diverse applications such as counting mitotic figures with a screening mode, finding false annotations on a novel validation view, or using the latest deep learning image analysis technologies. This is combined with a version control system which makes it possible to keep track of changes in the data sets and, for example, to link the results of deep learning experiments to specific data set versions. EXACT is freely available and has already been successfully applied to a broad range of annotation tasks, including highly diverse applications like deep learning supported cytology scoring, interdisciplinary multi-centre whole slide image tumour annotation, and highly specialised whale sound spectroscopy clustering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA