Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 218: 106701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35259673

RESUMO

BACKGROUND AND OBJECTIVE: Revealing the complexity behind subject-specific ankle joint mechanics requires simultaneous analysis of three-dimensional bony and soft-tissue structures. 3D musculoskeletal models have become pivotal in orthopedic treatment planning and biomechanical research. Since manual segmentation of these models is time-consuming and subject to manual errors, (semi-) automatic methods could improve the accuracy and enlarge the sample size of personalised 'in silico' biomechanical experiments and computer-assisted treatment planning. Therefore, our aim was to automatically predict ligament paths, cartilage topography and thickness in the ankle joint based on statistical shape modelling. METHODS: A personalised cartilage and ligamentous prediction algorithm was established using geometric morphometrics, based on an 'in-house' generated lower limb skeletal model (N = 542), tibiotalar cartilage (N = 60) and ankle ligament segmentations (N = 10). For cartilage, a population-averaged thickness map was determined by use of partial least-squares regression. Ligaments were wrapped around bony contours based on iterative shortest path calculation. Accuracy of ligament path and cartilage thickness prediction was quantified using leave-one-out experiments. The novel personalised thickness prediction was compared with a constant cartilage thickness of 1.50 mm by use of a paired sample T-test. RESULTS: Mean distance error of cartilage and ligament prediction was 0.12 mm (SD 0.04 mm) and 0.54 mm (SD 0.05 mm), respectively. No significant differences were found between the personalised thickness cartilage and segmented cartilage of the tibia (p = 0.73, CI [-1.60 .10-17, 1.13 .10-17]) and talus (p = 0.95, CI[ -1.35 .10-17, 1.28 .10-17]). For the constant thickness cartilage, a statistically significant difference was found in 89% and 92% of the tibial (p < 0.001, CI [0.51, 0.58]) and talar (p < 0.001, CI [0.33, 0.40]) cartilage area. CONCLUSIONS: In this study, we described a personalised prediction algorithm of cartilage and ligaments in the ankle joint. We were able to predict cartilage and main ankle ligaments with submillimeter accuracy. The proposed method has a high potential for generating large (virtual) sample sizes in biomechanical research and mitigates technological advances in computer-assisted orthopaedic surgery.


Assuntos
Cartilagem Articular , Tálus , Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/diagnóstico por imagem , Tíbia/diagnóstico por imagem
2.
J Hip Preserv Surg ; 7(4): 677-687, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34548927

RESUMO

The risk for ischiofemoral impingement has been mainly related to a reduced ischiofemoral distance and morphological variance of the femur. From an evolutionary perspective, however, there are strong arguments that the condition may also be related to sexual dimorphism of the pelvis. We, therefore, investigated the impact of gender-specific differences in anatomy of the ischiofemoral space on the ischiofemoral clearance, during static and dynamic conditions. A random sampling Monte-Carlo experiment was performed to investigate ischiofemoral clearance during stance and gait in a large (n = 40 000) virtual study population, while using gender-specific kinematics. Subsequently, a validated gender-specific geometric morphometric analysis of the hip was performed and correlations between overall hip morphology (statistical shape analysis) and standard discrete measures (conventional metric approach) with the ischiofemoral distance were evaluated. The available ischiofemoral space is indeed highly sexually dimorphic and related primarily to differences in the pelvic anatomy. The mean ischiofemoral distance was 22.2 ± 4.3 mm in the females and 29.1 ± 4.1 mm in the males and this difference was statistically significant (P < 0.001). Additionally, the ischiofemoral distance was observed to be a dynamic measure, and smallest during femoral extension, and this in turn explains the clinical sign of pain in extension during long stride walking. In conclusion, the presence of a reduced ischiofemroal distance and related risk to develop a clinical syndrome of ischiofemoral impingement is strongly dominated by evolutionary effects in sexual dimorphism of the pelvis. This should be considered when female patients present with posterior thigh/buttock pain, particularly if worsened by extension. Controlled laboratory study.

3.
Knee ; 21(2): 518-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24359641

RESUMO

BACKGROUND: Trochlear dysplasia is known as the primary predisposing factor for patellar dislocation. Current methods to describe trochlear dysplasia are mainly qualitative or based on a limited number of discrete measurements. The purpose of this study is to apply statistical shape analysis to take the full geometrical complexity of trochlear dysplasia into account. METHODS: Statistical shape analysis was applied to 20 normal and 20 trochlear dysplastic distal femur models, including the cartilage. RESULTS: This study showed that the trochlea was anteriorized, proximalized and lateralized and that the mediolateral width and the notch width were decreased in the trochlear dysplastic femur compared to the normal femur. The first three principal components of the trochlear dysplastic femurs, accounting for 79.7% of the total variation, were size, sulcus angle and notch width. Automated classification of the trochlear dysplastic and normal femora achieved a sensitivity of 85% and a specificity of 95%. CONCLUSIONS: This study shows that shape analysis is an outstanding method to visualise the location and magnitude of shape abnormalities. Improvement of automated classification and subtyping within the trochlear dysplastic group are expected when larger training sets are used. CLINICAL RELEVANCE: Classification of trochlear dysplasia, especially borderline cases may be facilitated by automated classification. Furthermore, the identification of a decreased notch width in association with an increased sulcus angle can also contribute to the diagnosis of trochlear dysplasia.


Assuntos
Fêmur/anormalidades , Fêmur/diagnóstico por imagem , Imageamento Tridimensional , Modelos Estatísticos , Adolescente , Adulto , Cartilagem Articular/diagnóstico por imagem , Estudos de Casos e Controles , Análise Discriminante , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Articulação Patelofemoral/anormalidades , Articulação Patelofemoral/diagnóstico por imagem , Análise de Componente Principal , Adulto Jovem
4.
Bone Joint Res ; 1(12): 324-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23610664

RESUMO

The aim of this review is to evaluate the current available literature evidencing on peri-articular hip endoscopy (the third compartment). A comprehensive approach has been set on reports dealing with endoscopic surgery for recalcitrant trochanteric bursitis, snapping hip (or coxa-saltans; external and internal), gluteus medius and minimus tears and endoscopy (or arthroscopy) after total hip arthroplasty. This information can be used to trigger further research, innovation and education in extra-articular hip endoscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA