Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 10, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272919

RESUMO

Macrophages play an essential role in rheumatoid arthritis. Depending on their phenotype (M1 or M2), they can play a role in the initiation or resolution of inflammation. The M1/M2 ratio in rheumatoid arthritis is higher than in healthy controls. Despite this, no treatment targeting specifically macrophages is currently used in clinics. Thus, devising strategies to selectively deplete proinflammatory macrophages and promote anti-inflammatory macrophages could be a promising therapeutic approach. State-of-the-art molecular interaction maps of M1 and M2 macrophages in rheumatoid arthritis are available and represent a dense source of knowledge; however, these maps remain limited by their static nature. Discrete dynamic modelling can be employed to study the emergent behaviours of these systems. Nevertheless, handling such large-scale models is challenging. Due to their massive size, it is computationally demanding to identify biologically relevant states in a cell- and disease-specific context. In this work, we developed an efficient computational framework that converts molecular interaction maps into Boolean models using the CaSQ tool. Next, we used a newly developed version of the BMA tool deployed to a high-performance computing cluster to identify the models' steady states. The identified attractors are then validated using gene expression data sets and prior knowledge. We successfully applied our framework to generate and calibrate the M1 and M2 macrophage Boolean models for rheumatoid arthritis. Using KO simulations, we identified NFkB, JAK1/JAK2, and ERK1/Notch1 as potential targets that could selectively suppress proinflammatory macrophages and GSK3B as a promising target that could promote anti-inflammatory macrophages in rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/uso terapêutico , Simulação por Computador
2.
NAR Genom Bioinform ; 4(3): lqac049, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35855325

RESUMO

Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.

3.
Crit Rev Oncol Hematol ; 49(3): 277-82, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15036267

RESUMO

Matrix metalloproteases (MMPs) are zinc endopeptidases deeply implicated in tumor progression. MMP inhibitors are attractive potential anti-cancer agent. Unfortunately, until now, clinical trials remain disappointing, that could be the result of a lack of selectivity. We propose second generation selective MMPs, directed toward gelatinase A (MMP-2), based on a non-hydroxamate Zn-ligand grafted on the galardin (ilomastat) skeleton.


Assuntos
Inibidores Enzimáticos/síntese química , Metaloproteinase 2 da Matriz/metabolismo , Animais , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA