Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA Res ; 7(2): 98-105, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35387279

RESUMO

Recent research provides insight into the ability of miRNA to regulate various pathways in several cancer types. Despite their involvement in the regulation of the mRNA via targeting the 3'UTR, there are relatively few studies examining the changes in these regulatory mechanisms specific to single cancer types or shared between different cancer types. We analyzed samples where both miRNA and mRNA expression had been measured and performed a thorough correlation analysis on 7494 experimentally validated human miRNA-mRNA target-gene pairs in both healthy and tumoral samples. We show how more than 90% of these miRNA-mRNA interactions show a loss of regulation in the tumoral samples compared with their healthy counterparts. As expected, we found shared miRNA-mRNA dysregulated pairs among different tumors of the same tissue. However, anatomically different cancers also share multiple dysregulated interactions, suggesting that some cancer-related mechanisms are not tumor-specific. 2865 unique miRNA-mRNA pairs were identified across 13 cancer types, ≈ 40% of these pairs showed a loss of correlation in the tumoral samples in at least 2 out of the 13 analyzed cancers. Specifically, miR-200 family, miR-155 and miR-1 were identified, based on the computational analysis described below, as the miRNAs that potentially lose the highest number of interactions across different samples (only literature-based interactions were used for this analysis). Moreover, the miR-34a/ALDH2 and miR-9/MTHFD2 pairs show a switch in their correlation between healthy and tumor kidney samples suggesting a possible change in the regulation exerted by the miRNAs. Interestingly, the expression of these mRNAs is also associated with the overall survival. The disruption of miRNA regulation on its target, therefore, suggests the possible involvement of these pairs in cell malignant functions. The analysis reported here shows how the regulation of miRNA-mRNA interactions strongly differs between healthy and tumoral cells, based on the strong correlation variation between miRNA and its target that we obtained by analyzing the expression data of healthy and tumor tissue in highly reliable miRNA-target pairs. Finally, a go term enrichment analysis shows that the critical pairs identified are involved in cellular adhesion, proliferation, and migration.

2.
Sci Rep ; 9(1): 15222, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645597

RESUMO

Recent advances in pharmacogenomics have generated a wealth of data of different types whose analysis have helped in the identification of signatures of different cellular sensitivity/resistance responses to hundreds of chemical compounds. Among the different data types, gene expression has proven to be the more successful for the inference of drug response in cancer cell lines. Although effective, the whole transcriptome can introduce noise in the predictive models, since specific mechanisms are required for different drugs and these realistically involve only part of the proteins encoded in the genome. We analyzed the pharmacogenomics data of 961 cell lines tested with 265 anti-cancer drugs and developed different machine learning approaches for dissecting the genome systematically and predict drug responses using both drug-unspecific and drug-specific genes. These methodologies reach better response predictions for the vast majority of the screened drugs using tens to few hundreds genes specific to each drug instead of the whole genome, thus allowing a better understanding and interpretation of drug-specific response mechanisms which are not necessarily restricted to the drug known targets.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Genoma Humano/efeitos dos fármacos , Humanos , Aprendizado de Máquina , Modelos Biológicos , Farmacogenética , Transcriptoma/efeitos dos fármacos
3.
Nucleic Acids Res ; 47(10): 4958-4969, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31162604

RESUMO

RNA molecules are able to bind proteins, DNA and other small or long RNAs using information at primary, secondary or tertiary structure level. Recent techniques that use cross-linking and immunoprecipitation of RNAs can detect these interactions and, if followed by high-throughput sequencing, molecules can be analysed to find recurrent elements shared by interactors, such as sequence and/or structure motifs. Many tools are able to find sequence motifs from lists of target RNAs, while others focus on structure using different approaches to find specific interaction elements. In this work, we make a systematic analysis of RBP-RNA and RNA-RNA datasets to better characterize the interaction landscape with information about multi-motifs on the same RNAs. To achieve this goal, we updated our BEAM algorithm to combine both sequence and structure information to create pairs of patterns that model motifs of interaction. This algorithm was applied to several RNA binding proteins and ncRNAs interactors, confirming already known motifs and discovering new ones. This landscape analysis on interaction variability reflects the diversity of target recognition and underlines that often both primary and secondary structure are involved in molecular recognition.


Assuntos
Motivos de Nucleotídeos , Proteínas de Ligação a RNA/química , RNA/química , Análise de Sequência de RNA/métodos , Algoritmos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Células HEK293 , Células Hep G2 , Humanos , Células K562 , Camundongos , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Nucleic Acids Res ; 35(Web Server issue): W451-4, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17485474

RESUMO

SH3-Hunter (http://cbm.bio.uniroma2.it/SH3-Hunter/) is a web server for the recognition of putative SH3 domain interaction sites on protein sequences. Given an input query consisting of one or more protein sequences, the server identifies peptides containing poly-proline binding motifs and associates them to a list of SH3 domains, in order to compose peptide-domain pairs. The server can accept a list of peptides and allows users to upload an input file in a proper format. An accurate selection of SH3 domains is available and users can also submit their own SH3 domain sequence. SH3-Hunter evaluates which peptide-domain pair represents a possible interaction pair and produces as output a list of significant interaction sites for each query protein. Each proposed interaction site is associated to a propensity score and sensitivity and precision levels for the prediction. The server prediction capability is based on a neural network model integrating high-throughput pep-spot data with structural information extracted from known SH3-peptide complexes.


Assuntos
Biologia Computacional/métodos , Redes Neurais de Computação , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Domínios de Homologia de src
5.
BMC Bioinformatics ; 6 Suppl 4: S13, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16351739

RESUMO

BACKGROUND: The SH3 domain family is one of the most representative and widely studied cases of so-called Peptide Recognition Modules (PRM). The polyproline II motif PxxP that generally characterizes its ligands does not reflect the complex interaction spectrum of the over 1500 different SH3 domains, and the requirement of a more refined knowledge of their specificity implies the setting up of appropriate experimental and theoretical strategies. Due to the limitations of the current technology for peptide synthesis, several experimental high-throughput approaches have been devised to elucidate protein-protein interaction mechanisms. Such approaches can rely on and take advantage of computational techniques, such as regular expressions or position specific scoring matrices (PSSMs) to pre-process entire proteomes in the search for putative SH3 targets. In this regard, a reliable inference methodology to be used for reducing the sequence space of putative binding peptides represents a valuable support for molecular and cellular biologists. RESULTS: Using as benchmark the peptide sequences obtained from in vitro binding experiments, we set up a neural network model that performs better than PSSM in the detection of SH3 domain interactors. In particular our model is more precise in its predictions, even if its performance can vary among different SH3 domains and is strongly dependent on the number of binding peptides in the benchmark. CONCLUSION: We show that a neural network can be more effective than standard methods in SH3 domain specificity detection. Neural classifiers identify general SH3 domain binders and domain-specific interactors from a PxxP peptide population, provided that there are a sufficient proportion of true positives in the training sets. This capability can also improve peptide selection for library definition in array experiments. Further advances can be achieved, including properly encoded domain sequences and structural information as input for a global neural network.


Assuntos
Biologia Computacional/métodos , Redes Neurais de Computação , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Ligantes , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sensibilidade e Especificidade , Alinhamento de Sequência , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA