Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38345524

RESUMO

ABSTRACT: Facial grimacing is used to quantify spontaneous pain in mice and other mammals, but scoring relies on humans with different levels of proficiency. Here, we developed a cloud-based software platform called PainFace (http://painface.net) that uses machine learning to detect 4 facial action units of the mouse grimace scale (orbitals, nose, ears, whiskers) and score facial grimaces of black-coated C57BL/6 male and female mice on a 0 to 8 scale. Platform accuracy was validated in 2 different laboratories, with 3 conditions that evoke grimacing-laparotomy surgery, bilateral hindpaw injection of carrageenan, and intraplantar injection of formalin. PainFace can generate up to 1 grimace score per second from a standard 30 frames/s video, making it possible to quantify facial grimacing over time, and operates at a speed that scales with computing power. By analyzing the frequency distribution of grimace scores, we found that mice spent 7x more time in a "high grimace" state following laparotomy surgery relative to sham surgery controls. Our study shows that PainFace reproducibly quantifies facial grimaces indicative of nonevoked spontaneous pain and enables laboratories to standardize and scale-up facial grimace analyses.

2.
Pain ; 164(3): 577-586, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916733

RESUMO

ABSTRACT: Human epidemiological studies suggest that chronic pain can increase mortality risk. We investigated whether this was true in mice so that underlying mechanisms might be identified. At 10 weeks of age, C57BL/6 mice of both sexes received sham or spared nerve injury (SNI) surgery producing neuropathic pain. Mice were weighed monthly, tested behaviorally for mechanical and cold sensitivity and guarding behavior every 3 months postsurgery, and otherwise left undisturbed in their cages until death by natural causes. Evidence of pain over the lifespan displayed a strikingly sex-specific pattern. Male mice displayed largely stable mechanical and cold hypersensitivity and guarding at 6 to 30 months post-SNI. By contrast, female mice displayed a biphasic temporal pattern of mechanical hypersensitivity and guarding behavior, with a complete resolution of SNI-induced pain behavior at 6 to 9 months post-SNI followed by the return of pain thereafter. Mouse lifespan was not significantly altered by SNI in either sex nor was frailty as assessed by cage inspection in the last 6 months of life. However, in male mice with SNI, we observe a significant correlation between average lifetime mechanical hypersensitivity and lifespan, such that death occurred sooner in male mice exhibiting more evidence of chronic pain. This relationship was not observed in female SNI mice nor in sham-operated mice of either sex. This experiment is the first to investigate pain behavior over an entire adult lifetime and suggests that biology of relevance to human chronic pain is being ignored by the very short timespans of most extant preclinical pain research.


Assuntos
Dor Crônica , Neuralgia , Humanos , Camundongos , Animais , Masculino , Feminino , Hiperalgesia/etiologia , Dor Crônica/complicações , Camundongos Endogâmicos C57BL , Neuralgia/complicações , Modelos Animais de Doenças
3.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426375

RESUMO

Mice with experimental nerve damage can display long­lasting neuropathic pain behavior. We show here that 4 months and later after nerve injury, male but not female mice displayed telomere length (TL) reduction and p53­mediated cellular senescence in the spinal cord, resulting in maintenance of pain and associated with decreased lifespan. Nerve injury increased the number of p53­positive spinal cord neurons, astrocytes, and microglia, but only in microglia was the increase male­specific, matching a robust sex specificity of TL reduction in this cell type, which has been previously implicated in male­specific pain processing. Pain hypersensitivity was reversed by repeated intrathecal administration of a p53­specific senolytic peptide, only in male mice and only many months after injury. Analysis of UK Biobank data revealed sex-specific relevance of this pathway in humans, featuring male­specific genetic association of the human p53 locus (TP53) with chronic pain and a male-specific effect of chronic pain on mortality. Our findings demonstrate the existence of a biological mechanism maintaining pain behavior, at least in males, occurring much later than the time span of virtually all extant preclinical studies.


Assuntos
Dor Crônica , Neuralgia , Animais , Senescência Celular , Dor Crônica/genética , Dor Crônica/metabolismo , Feminino , Hiperalgesia/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Medula Espinal/metabolismo , Telômero/genética , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Curr Biol ; 30(15): R866-R867, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750341

RESUMO

The adaptive significance of acute pain (to withdraw from tissue-damaging or potentially tissue-damaging external stimuli, and to enhance the salience of the stimulus resulting in escape and avoidance learning) and tonic pain (to enforce recuperation by punishing movement) are well-accepted [1]. Pain researchers, however, generally assert that chronic pain has no adaptive significance, representing instead a pathophysiological state. This belief was recently challenged by the observation [2] that nociceptive sensitization caused by a chronic pain-producing injury reduced predation risk in squid (Doryteuthis pealeii). In that study, injury to an arm (removal of the tip with a scalpel) 6 hours prior led to increased targeting by black sea bass, resulting in decreased survival of the squid in a 30-minute trial featuring free interaction between predator and prey. The surprising finding was that anesthesia during surgery, preventing the chronic nociceptor sensitization associated with such injuries, led to even lower probability of survival. That is, the likely presence of pain increased apparent fitness, and the authors concluded that the chronic pain state and its associated nociceptive sensitization represented an adaptive function. Pain-induced defensive behaviors affecting fitness have also been reported in crustaceans (Gammarus fossarum) [3]. It is, however, currently unknown whether this may also be true in any other species, including in Mammalia.


Assuntos
Ansiedade/etiologia , Ansiedade/psicologia , Dor Crônica/complicações , Dor Crônica/psicologia , Camundongos/psicologia , Comportamento Predatório/fisiologia , Animais
5.
J Neurosci ; 37(41): 9819-9827, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28877966

RESUMO

It has been reported consistently that many female chronic pain sufferers have an attenuation of symptoms during pregnancy. Rats display increased pain tolerance during pregnancy due to an increase in opioid receptors in the spinal cord. Past studies did not consider the role of non-neuronal cells, which are now known to play an important role in chronic pain processing. Using an inflammatory (complete Freund's adjuvant) or neuropathic (spared nerve injury) model of persistent pain, we observed that young adult female mice in early pregnancy switch from a microglia-independent to a microglia-dependent pain hypersensitivity mechanism. During late pregnancy, female mice show no evidence of chronic pain whatsoever. This pregnancy-related analgesia is reversible by intrathecal administration of naloxone, suggesting an opioid-mediated mechanism; pharmacological and genetic data suggest the importance of δ-opioid receptors. We also observe that T-cell-deficient (nude and Rag1-null mutant) pregnant mice do not exhibit pregnancy analgesia, which can be rescued with the adoptive transfer of CD4+ or CD8+ T cells from late-pregnant wild-type mice. These results suggest that T cells are a mediator of the opioid analgesia exhibited during pregnancy.SIGNIFICANCE STATEMENT Chronic pain symptoms often subside during pregnancy. This pregnancy-related analgesia has been demonstrated for acute pain in rats. Here, we show that pregnancy analgesia can produce a complete cessation of chronic pain behaviors in mice. We show that the phenomenon is dependent on pregnancy hormones (estrogen and progesterone), δ-opioid receptors, and T cells of the adaptive immune system. These findings add to the recent but growing evidence of sex-specific T-cell involvement in chronic pain processing.


Assuntos
Analgesia , Dor Crônica/fisiopatologia , Prenhez/fisiologia , Linfócitos T , Transferência Adotiva , Animais , Dor Crônica/induzido quimicamente , Feminino , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Microglia/imunologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neuralgia/fisiopatologia , Ovariectomia , Gravidez , Receptores Opioides delta/efeitos dos fármacos , Linfócitos T/imunologia
6.
J Clin Invest ; 127(9): 3353-3366, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783046

RESUMO

The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions.


Assuntos
Dor Crônica/metabolismo , Epirregulina/genética , Epirregulina/fisiologia , Receptores ErbB/fisiologia , Adolescente , Adulto , Animais , Comportamento Animal , Estudos de Casos e Controles , Estudos de Coortes , Drosophila melanogaster , Feminino , Humanos , Hiperalgesia/metabolismo , Inflamação , Ligantes , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Mutação , Neurônios/metabolismo , Manejo da Dor , Fosforilação , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Transdução de Sinais , Adulto Jovem
7.
Nat Med ; 18(4): 595-9, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22447075

RESUMO

Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da. Using genome-wide linkage analyses, we discovered an association between nerve-injury-induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain.


Assuntos
Dor Crônica/genética , Mutação/genética , Limiar da Dor/fisiologia , Receptores Purinérgicos P2X7/genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Benzoxazóis/metabolismo , Cálcio/metabolismo , Carbenoxolona/farmacologia , Células Cultivadas , Dor Crônica/etiologia , Dor Crônica/patologia , Estudos de Coortes , Conexinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Genótipo , Histidina/genética , Humanos , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mastectomia/efeitos adversos , Camundongos , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/metabolismo , Osteoartrite/complicações , Medição da Dor , Peptídeos/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Compostos de Quinolínio/metabolismo , Estudos Retrospectivos , Especificidade da Espécie , Fatores de Tempo , Transfecção
8.
Pain ; 144(3): 294-302, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19464798

RESUMO

It is widely appreciated that there is significant inter-individual variability in pain sensitivity, yet only a handful of contributing genetic variants have been identified. Computational genetic mapping and quantitative trait locus analysis suggested that variation within the gene coding for the beta3 subunit of the Na+,K+-ATPase pump (Atp1b3) contributes to inter-strain differences in the early phase formalin pain behavior. Significant strain differences in Atp1b3 gene expression, beta3 protein expression, and biophysical properties of the Na+,K+ pump in dorsal root ganglia neurons from resistant (A/J) and sensitive (C57BL/6J) mouse strains supported the genetic prediction. Furthermore, in vivo siRNA knockdown of the beta3 subunit produced strain-specific changes in the early phase pain response, completely rescuing the strain difference. These findings indicate that the beta3 subunit of the Na+,K+-ATPase is a novel determinant of nociceptive sensitivity and further supports the notion that pain variability genes can have very selective effects on individual pain modalities.


Assuntos
Nociceptores/enzimologia , Limiar da Dor/fisiologia , Dor/enzimologia , Dor/genética , Células Receptoras Sensoriais/enzimologia , ATPase Trocadora de Sódio-Potássio/genética , Animais , Regulação para Baixo/genética , Feminino , Gânglios Espinais/metabolismo , Predisposição Genética para Doença/genética , Variação Genética/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/fisiopatologia , Medição da Dor , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Especificidade da Espécie
9.
J Mol Neurosci ; 39(1-2): 125-36, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19381879

RESUMO

We have previously shown that, in AKR and C57BL/6 mice, a genetic polymorphism results in differential expression of the peptide, calcitonin gene-related polypeptide (CGRP), explaining a strain difference in thermal pain sensitivity. Although CGRP is widely distributed in the brain, little is known about the effects of supraspinal CGRP. We used AKR and C57BL/6 mice as a model to explore the effects of centrally (intracerebroventricular) injected CGRP and the CGRP receptor antagonists, CGRP(8-37) and BIBN4096BS, in a series of behavioral assays. Locomotor activity was significantly increased in C57BL/6 mice following the injection of BIBN4096BS and in both strains after the administration of CGRP(8-37) into the third ventricle. CGRP increased paw-withdrawal latencies in C57BL/6 mice only, while decreasing depression-like behaviors in both strains in the forced-swimming test. CGRP and CGRP receptor antagonists failed to modulate activity in the elevated plus maze, a model of anxiety. Taken together, these results suggest a complex role for supraspinal CGRP systems in the regulation of locomotion, nociception, and depression-like behaviors.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Depressão/metabolismo , Atividade Motora/fisiologia , Dor/fisiopatologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Medição da Dor , Polimorfismo Genético , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA