Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 350(6264): 1089-92, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612952

RESUMO

The invasion of a suitable host hepatocyte by mosquito-transmitted Plasmodium sporozoites is an essential early step in successful malaria parasite infection. Yet precisely how sporozoites target their host cell and facilitate productive infection remains largely unknown. We found that the hepatocyte EphA2 receptor was critical for establishing a permissive intracellular replication compartment, the parasitophorous vacuole. Sporozoites productively infected hepatocytes with high EphA2 expression, and the deletion of EphA2 protected mice from liver infection. Lack of host EphA2 phenocopied the lack of the sporozoite proteins P52 and P36. Our data suggest that P36 engages EphA2, which is likely to be a key step in establishing the permissive replication compartment.


Assuntos
Hepatócitos/enzimologia , Hepatócitos/parasitologia , Malária/enzimologia , Malária/parasitologia , Plasmodium/fisiologia , Proteínas de Protozoários/metabolismo , Receptor EphA2/metabolismo , Esporozoítos/fisiologia , Animais , Anopheles/parasitologia , Linhagem Celular Tumoral , Humanos , Malária/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Plasmodium/genética , Receptor EphA2/genética
2.
Mol Ther ; 23(5): 857-865, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25648263

RESUMO

Eliminating malaria parasites during the asymptomatic but obligate liver stages (LSs) of infection would stop disease and subsequent transmission. Unfortunately, only a single licensed drug that targets all LSs, Primaquine, is available. Targeting host proteins might significantly expand the repertoire of prophylactic drugs against malaria. Here, we demonstrate that both Bcl-2 inhibitors and P53 agonists dramatically reduce LS burden in a mouse malaria model in vitro and in vivo by altering the activity of key hepatocyte factors on which the parasite relies. Bcl-2 inhibitors act primarily by inducing apoptosis in infected hepatocytes, whereas P53 agonists eliminate parasites in an apoptosis-independent fashion. In combination, Bcl-2 inhibitors and P53 agonists act synergistically to delay, and in some cases completely prevent, the onset of blood stage disease. Both families of drugs are highly effective at doses that do not cause substantial hepatocyte cell death in vitro or liver damage in vivo. P53 agonists and Bcl-2 inhibitors were also effective when administered to humanized mice infected with Plasmodium falciparum. Our data demonstrate that host-based prophylaxis could be developed into an effective intervention strategy that eliminates LS parasites before the onset of clinical disease and thus opens a new avenue to prevent malaria.


Assuntos
Antimaláricos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/parasitologia , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/fisiologia , Profilaxia Pós-Exposição , Animais , Antimaláricos/administração & dosagem , Linhagem Celular , Modelos Animais de Doenças , Feminino , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Indóis , Malária/tratamento farmacológico , Malária/metabolismo , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Transgênicos , Carga Parasitária , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirróis/administração & dosagem , Pirróis/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
3.
Infect Immun ; 83(1): 39-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312960

RESUMO

After transmission by Anopheles mosquitoes, Plasmodium sporozoites travel to the liver, infect hepatocytes, and rapidly develop as intrahepatocytic liver stages (LS). Rodent models of malaria exhibit large differences in the magnitude of liver infection, both between parasite species and between strains of mice. This has been mainly attributed to differences in innate immune responses and parasite infectivity. Here, we report that BALB/cByJ mice are more susceptible to Plasmodium yoelii preerythrocytic infection than BALB/cJ mice. This difference occurs at the level of early hepatocyte infection, but expression levels of reported host factors that are involved in infection do not correlate with susceptibility. Interestingly, BALB/cByJ hepatocytes are more frequently polyploid; thus, their susceptibility converges on the previously observed preference of sporozoites to infect polyploid hepatocytes. Gene expression analysis demonstrates hepatocyte-specific differences in mRNA abundance for numerous genes between BALB/cByJ and BALB/cJ mice, some of which encode hepatocyte surface molecules. These data suggest that a yet-unknown receptor for sporozoite infection, present at elevated levels on BALB/cByJ hepatocytes and also polyploid hepatocytes, might facilitate Plasmodium liver infection.


Assuntos
Suscetibilidade a Doenças , Endocitose , Hepatócitos/parasitologia , Malária/imunologia , Malária/parasitologia , Plasmodium yoelii/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos BALB C
4.
Cell Microbiol ; 16(5): 784-95, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24612025

RESUMO

Plasmodium parasites infect hepatocytes of their mammalian hosts and undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signalling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy on liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalysed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite's preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes.


Assuntos
Hepatócitos/parasitologia , Fígado/patologia , Fígado/parasitologia , Malária/patologia , Malária/parasitologia , Plasmodium yoelii/crescimento & desenvolvimento , Poliploidia , Animais , Linhagem Celular , Citometria de Fluxo , Humanos , Malária/genética , Camundongos
5.
Cell Rep ; 3(3): 630-7, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23478020

RESUMO

Plasmodium parasites infect the liver and replicate inside hepatocytes before they invade erythrocytes and trigger clinical malaria. Analysis of host signaling pathways affected by liver-stage infection could provide critical insights into host-pathogen interactions and reveal targets for intervention. Using protein lysate microarrays, we found that Plasmodium yoelii rodent malaria parasites perturb hepatocyte regulatory pathways involved in cell survival, proliferation, and autophagy. Notably, the prodeath protein p53 was substantially decreased in infected hepatocytes, suggesting that it could be targeted by the parasite to foster survival. Indeed, mice that express increased levels of p53 showed reduced liver-stage parasite burden, whereas p53 knockout mice suffered increased liver-stage burden. Furthermore, boosting p53 levels with the use of the small molecule Nutlin-3 dramatically reduced liver-stage burden in vitro and in vivo. We conclude that perturbation of the hepatocyte p53 pathway critically impacts parasite survival. Thus, host pathways might constitute potential targets for host-based antimalarial prophylaxis.


Assuntos
Fígado/parasitologia , Plasmodium yoelii/patogenicidade , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Autofagia , Proliferação de Células , Sobrevivência Celular , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Imidazóis/farmacologia , Estágios do Ciclo de Vida , Camundongos , Camundongos Transgênicos , Mutação , Piperazinas/farmacologia , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Análise Serial de Proteínas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA