RESUMO
Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute-phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)-1ß (r = 0.252, p = .042), IL-6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C-reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4-week continuous treatment with glucagon induced a significant increase in circulating IL-1ß (p = .02), and IL-6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA-II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF-κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose-dependently stimulated the expression of IL-1ß (p < .002), IL-6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C-reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase-1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF-κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA-II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose-dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF-κB and STAT3, in the absence of GRA-II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.
Assuntos
NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Glucagon/farmacologia , Complemento C3/farmacologia , Interleucina-6 , Inflamassomos/metabolismo , Fígado/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologiaRESUMO
BACKGROUND: Prior studies in animal models showed that increased cardiac expression of TRIB3 has a pathogenic role in inducing left ventricular mass (LVM). Whether alterations in TRIB3 expression or function have a pathogenic role in inducing LVM increase also in humans is still unsettled. In order to address this issue, we took advantage of a nonsynonymous TRIB3 Q84R polymorphism (rs2295490), a gain-of-function amino acid substitution impairing insulin signalling, and action in primary human endothelial cells which has been associated with insulin resistance, and early vascular atherosclerosis. METHODS: SNP rs2295490 was genotyped in 2426 White adults in whom LVM index (LVMI) was assessed by validated echocardiography-derived measures. RESULTS: After adjusting for age and sex, LVMI progressively and significantly increased from 108 to 113, to 125 g/m2 in Q84Q, Q84R, and R84R individuals, respectively (Q84R vs. Q84Q, P = 0.03; R84R vs. Q84Q, P < 0.0001). The association between LVMI and the Q84R and R84R genotype remained significant after adjusting for blood pressure, smoking habit, fasting glucose levels, glucose tolerance status, anti-hypertensive treatments, and lipid-lowering therapy (Q84R vs. Q84Q, P = 0.01; R84R vs. Q84Q, P < 0.0001). CONCLUSIONS: We found that the gain-of-function TRIB3 Q84R variant is significantly associated with left ventricular mass in a large sample of White nondiabetic individual of European ancestry.
Assuntos
Doenças Cardiovasculares/genética , Proteínas de Ciclo Celular/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Função Ventricular Esquerda/genética , Remodelação Ventricular/genética , Adulto , Idoso , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/fisiopatologia , Estudos Transversais , Ecocardiografia Doppler , Estudos de Associação Genética , Predisposição Genética para Doença , Fatores de Risco de Doenças Cardíacas , Humanos , Itália/epidemiologia , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Medição de Risco , População Branca/genéticaRESUMO
OBJECTIVE: Subjects with low levels of HDL (high-density lipoprotein) and ApoA-1 (apolipoprotein A-1) have increased risk to develop type 2 diabetes. HDL levels are an independent predictor of ß-cell function and positively modulate it. Type 2 diabetes is characterized by defects in both ß and α-cell function, but the effect of HDL and ApoA1 on α-cell function is unknown. Approach and Results: We observed a significant negative correlation (r=-0.422, P<0.0001) between HDL levels and fasting glucagon in a cohort of 132 Italian subjects. In a multivariable regression analysis including potential confounders such as age, sex, BMI, triglycerides, total cholesterol, fasting and 2-hour postload glucose, and fasting insulin, the association between HDL and fasting glucagon remained statistically significant (ß=-0.318, P=0.006). CD1 mice treated with HDL or ApoA-1 for 3 consecutive days showed a 32% (P<0.001) and 23% (P<0.05) reduction, respectively, in glucagon levels following insulin-induced hypoglycemia, compared with controls. Treatment of pancreatic αTC1 clone 6 cells with HDL or ApoA-1 for 24 hours resulted in a significant reduction of glucagon expression (P<0.04) and secretion (P<0.01) after an hypoglycemic stimulus and increased Akt (RAC-alpha serine/threonine-protein kinase) and FoxO1 (forkhead/winged helix box gene, group O-1) phosphorylation. Pretreatment with Akt inhibitor VIII, PI3K (phosphatidylinositol 3-kinase) inhibitor LY294002, and HDL receptor SCARB-1 (scavenger receptor class B type 1) inhibitor BLT-1 (block lipid transport-1) restored αTC1 cell response to low glucose levels. CONCLUSIONS: These results support the notion that HDL and ApoA-1 modulate glucagon expression and secretion by binding their cognate receptor SCARB-1, and activating the PI3K/Akt/FoxO1 signaling cascade in an in vitro α-cell model. Overall, these results raise the hypothesis that HDL and ApoA-1 may have a role in modulating glucagon secretion.
Assuntos
Apolipoproteína A-I/farmacologia , Células Secretoras de Glucagon/efeitos dos fármacos , Glucagon/sangue , Lipoproteínas HDL/farmacologia , Adulto , Animais , Apolipoproteína A-I/sangue , Linhagem Celular , Feminino , Proteína Forkhead Box O1/metabolismo , Células Secretoras de Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Itália , Lipoproteínas HDL/sangue , Masculino , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Depuradores Classe B/metabolismo , Via Secretória , Transdução de Sinais , Fatores de TempoRESUMO
BACKGROUND: Myocardial infarction is the main mortality cause in patients with type 2 diabetes (T2DM). Endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) is an early step of atherogenesis. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and it is metabolized by the enzymes dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2. The functional variant rs9267551 C, in the promoter region of DDAH2, has been linked to increased DDAH2 expression, and lower ADMA plasma levels, and was associated with lower risk of coronary artery disease in large-scale genome-wide association studies (GWAS) performed in the general population. However, it is unknown whether this association holds true in T2DM patients. To address this issue, we investigated whether rs9267551 is associated with risk of myocardial infarction in two cohorts of T2DM patients. METHODS: SNP rs9267551 was genotyped in 1839 White T2DM patients from the Catanzaro Study (CZ, n = 1060) and the Gargano Heart Study-cross sectional design (GHS, n = 779). Cases were patients with a previous myocardial infarction, controls were asymptomatic patients with neither previous myocardial ischemia nor signs of it at resting and during a maximal symptom limited stress electrocardiogram. RESULTS: Carriers of allele rs9267551 C showed a dose dependent reduction in the risk of myocardial infarction [(CZ = OR 0.380, 95% CI 0.175-0.823, p = 0.014), (GHS = 0.497, 0.267-0.923, p = 0.027), (Pooled = 0.458, 0.283-0.739, p = 0.001)] which remained significant after adjusting for sex, age, BMI, smoking, HbA1c, total cholesterol HDL, and triglyceride levels [(CZ = 0.307, 0.106-0.885, p = 0.029), (GHS = 0.512, 0.270-0.970, p = 0.040), (Pooled = 0.458, 0.266-0.787, p = 0.005)]. CONCLUSIONS: We found that rs9267551 polymorphism is significantly associated with myocardial infarction in T2DM patients of European ancestry from two independent cohorts. It is possible that in subjects carrying the protective C allele less ADMA accumulates in endothelial cells causing vascular protection as a consequence of higher nitric oxide availability.