Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675368

RESUMO

Growing resistance to antimicrobials, combined with pathogens that form biofilms, presents significant challenges in healthcare. Modifying current antimicrobial agents is an economical approach to developing novel molecules that could exhibit biological activity. Thus, five sulfanilamide Schiff bases were synthesized under microwave irradiation and characterized spectroscopically and in silico. They were evaluated for their antimicrobial and antibiofilm activities against both Gram-positive and Gram-negative bacterial strains. Their cytotoxic potential against two cancer cell lines was also determined. Gram-positive bacteria were susceptible to the action of these compounds. Derivatives 1b and 1d inhibited S. aureus's growth (MIC from 0.014 mg/mL) and biofilm (IC from 0.029 mg/mL), while compound 1e was active against E. faecalis's planktonic and sessile forms. Two compounds significantly reduced cell viability at 5 µg/mL after 24 h of exposure (1d-HT-29 colorectal adenocarcinoma cells, 1c-LN229 glioblastoma cells). A docking study revealed the increased binding affinities of these derivatives compared to sulfanilamide. Hence, these Schiff bases exhibited higher activity compared to their parent drug, with halogen groups playing a crucial role in both their antimicrobial and cytotoxic effects.

2.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534647

RESUMO

N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, NAHs represent potential solutions for developing improved treatment alternatives. Therefore, this research introduces six novel derivatives of (EZ)-N'-benzylidene-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide, synthesized using a microwave-assisted method. In more detail, we joined two pharmacophore fragments in a single molecule, represented by an NSAID-type carprofen structure and a hydrazone-type structure, obtaining a new series of NSAID-N-acyl hydrazone derivatives that were further characterized spectrally using FT-IR, NMR, and HRMS investigations. Additionally, the substances were assessed for their tuberculostatic activity by examining their impact on four strains of M. tuberculosis, including two susceptible to rifampicin (RIF) and isoniazid (INH), one susceptible to RIF and resistant to INH, and one resistant to both RIF and INH. The results of our research highlight the potential of the prepared compounds in fighting against antibiotic-resistant M. tuberculosis strains.

3.
Pharmaceutics ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399259

RESUMO

Curcumin is a polyphenol of the Curcuma longa plant, which can be used for various medicinal purposes, such as inflammation and cancer treatment. In this context, two symmetric curcumin derivatives (D1-(1E,6E)-1,7-bis(4-acetamidophenyl)hepta-1,6-diene-3,5-dione and D2-p,p-dihydroxy di-cinnamoyl methane) were obtained by the microwave-based method and evaluated for their antitumoral effect on human cervix cancer in comparison with toxicity on non-tumoral cells, taking into account that they were predicted to act as apoptosis agonists or anti-inflammatory agents. The HeLa cell line was incubated for 24 and 72 h with a concentration of 50 µg/mL of derivatives that killed almost half of the cells compared to the control. In contrast, these compounds did not alter the viability of MRC-5 non-tumoral lung fibroblasts until 72 h of incubation. The nitric oxide level released by HeLa cells was higher compared to MRC-5 fibroblasts after the incubation with 100 µg/mL. Both derivatives induced the decrease of catalase activity and glutathione levels in cancer cells without targeting the same effect in non-tumoral cells. Furthermore, the Western blot showed an increased protein expression of HSP70 and a decreased expression of HSP60 and MCM2 in cells incubated with D2 compared to control cells. We noticed differences regarding the intensity of cell death between the tested derivatives, suggesting that the modified structure after synthesis can modulate their function, the most prominent effect being observed for sample D2. In conclusion, the outcomes of our in vitro study revealed that these microwave-engineered curcumin derivatives targeted tumor cells, much more specifically, inducing their death.

4.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36994982

RESUMO

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Humanos , Aconitina/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases , Alcaloides/farmacologia , Alcaloides/uso terapêutico
5.
Front Cell Infect Microbiol ; 13: 1181516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680749

RESUMO

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance. Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles. Results and discussion: The crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents.


Assuntos
Anti-Inflamatórios não Esteroides , Cloro , Bromo , Antioxidantes/farmacologia , Reposicionamento de Medicamentos , Anti-Inflamatórios , Carbazóis/farmacologia , Antibacterianos/farmacologia , Biofilmes
6.
Pharmaceutics ; 15(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631339

RESUMO

Malignant melanoma poses a significant global health burden. It is the most aggressive and lethal form of skin cancer, attributed to various risk factors such as UV radiation exposure, genetic modifications, chemical carcinogens, immunosuppression, and fair complexion. Photodynamic therapy is a promising minimally invasive treatment that uses light to activate a photosensitizer, resulting in the formation of reactive oxygen species, which ultimately promote cell death. When selecting photosensitizers for melanoma photodynamic therapy, the presence of melanin should be considered. Melanin absorbs visible radiation similar to most photosensitizers and has antioxidant properties, which undermines the reactive species generated in photodynamic therapy processes. These characteristics have led to further research for new photosensitizing platforms to ensure better treatment results. The development of photosensitizers has advanced with the use of nanotechnology, which plays a crucial role in enhancing solubility, optical absorption, and tumour targeting. This paper reviews the current approaches (that use the synergistic effect of different photosensitizers, nanocarriers, chemotherapeutic agents) in the photodynamic therapy of melanoma.

7.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37375790

RESUMO

The chemical compounds from extracts of three Ranunculaceae species, Aconitum toxicum Rchb., Anemone nemorosa L. and Helleborus odorus Waldst. & Kit. ex Willd., respectively, were isolated using the HPLC purification technique and analyzed from a bioinformatics point of view. The classes of compounds identified based on the proportion in the rhizomes/leaves/flowers used for microwave-assisted extraction and ultrasound-assisted extraction were alkaloids and phenols. Here, the quantifying of pharmacokinetics, pharmacogenomics and pharmacodynamics helps us to identify the actual biologically active compounds. Our results showed that (i) pharmacokinetically, the compounds show good absorption at the intestinal level and high permeability at the level of the central nervous system for alkaloids; (ii) regarding pharmacogenomics, alkaloids can influence tumor sensitivity and the effectiveness of some treatments; (iii) and pharmacodynamically, the compounds of these Ranunculaceae species bind to carbonic anhydrase and aldose reductase. The results obtained showed a high affinity of the compounds in the binding solution at the level of carbonic anhydrases. Carbonic anhydrase inhibitors extracted from natural sources can represent the path to new drugs useful both in the treatment of glaucoma, but also of some renal, neurological and even neoplastic diseases. The identification of natural compounds with the role of inhibitors can have a role in different types of pathologies, both associated with studied and known receptors such as carbonic anhydrase and aldose reductase, as well as new pathologies not yet addressed.

8.
Pharmaceutics ; 14(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365208

RESUMO

Photodynamic therapy has the potential to be a new and effective cancer treatment. Even if in vitro and in vivo research show promise, the molecular mechanism remains unclear. In this study, molecular docking simulations predict the binding affinity of the 5,10,15,20-tetrakis(4'-sulfonatophenyl)-porphyrin tetraammonium photosensitizer on several potential targets in photodynamic treatment. Our results indicate that this photosensitizer binds to several receptor targets, including B-cell lymphoma 2 (BCL-2) and other related proteins BCL-xL, MCL-1, or A1. The binding affinity of the porphyrin derivative with human serum albumin was determined using UV-vis absorption spectroscopy and predicted using molecular docking. We conclude that the studied porphyrin photosensitizer binds to human serum albumin and may inhibit the cancer cell line through its interactions with HIS and MET AA residues from BCL-2, MCL-1, and ß-catenin receptors or through its low estimated free energy of binding when interacting with A1 and BCL-B receptors.

9.
Pharmaceutics ; 14(8)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015318

RESUMO

Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH2O (N-N: 1,10-phenanthroline/2,2'-bipyridine, Hbzac: 1-phenyl-1,3-butanedione, X: NO3/ClO4, and n = 0, 1) was studied. Single-crystal X-ray diffraction revealed a mononuclear structure for all complexes. The ability of the complexes to scavenge or trap reactive oxygen species such as O2⋅- and HO⋅ was proved by EPR spectroscopy experiments. All complexes inhibited B16 murine melanoma cells in a dose-dependent and nanomolar range, but the complexes with 1,10-phenanthroline were more active. Moreover, comparative activity on B16 and healthy BJ cells revealed a therapeutic index of 1.27-2.24. Bioinformatic methods were used to calculate the drug-likeness, pharmacokinetic, pharmacogenomic, and pharmacodynamic profiles of the compounds. The results showed that all compounds exhibit drug-likeness features, as well as promising absorption, distribution, metabolism, and excretion (ADME) properties, and no toxicity. The pharmacodynamics results showed that the neutral species appear to be good candidates for antitumor molecular targets (Tyrosyl-DNA phosphodiesterase 1, DNA-(apurinic or apyrimidinic site) lyase or Kruppel-like factor 5). Furthermore, the pharmacogenomic results showed a good affinity of the copper(II) complexes for the human cytochrome. These results recommend complexes bearing 1,10-phenanthroline as good candidates for developing drugs to melanoma alternative treatment.

10.
J Photochem Photobiol B ; 211: 111997, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32829256

RESUMO

The worldwide infection with the new Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) demands urgently new potent treatment(s). In this study we predict, using molecular docking, the binding affinity of 15 phenothiazines (antihistaminic and antipsychotic drugs) when interacting with the main protease (Mpro) of SARS-CoV-2. Additionally, we tested the binding affinity of photoproducts identified after irradiation of phenothiazines with Nd:YAG laser beam at 266 nm respectively 355 nm. Our results reveal that thioridazine and its identified photoproducts (mesoridazine and sulforidazine) have high biological activity on the virus Mpro. This shows that thioridazine and its two photoproducts might represent new potent medicines to be used for treatment in this outbreak. Such results recommend these medicines for further tests on cell cultures infected with SARS-CoV-2 or animal model. The transition to human subjects of the suggested treatment will be smooth due to the fact that the drugs are already available on the market.


Assuntos
Antivirais/farmacologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Fenotiazinas/farmacologia , Pneumonia Viral/tratamento farmacológico , Antivirais/química , Antivirais/efeitos da radiação , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Lasers de Estado Sólido , Simulação de Acoplamento Molecular , Pandemias , Fenotiazinas/química , Fenotiazinas/efeitos da radiação , Processos Fotoquímicos , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Tratamento Farmacológico da COVID-19
11.
CNS Neurol Disord Drug Targets ; 16(7): 800-811, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28088901

RESUMO

BACKGROUND: Alzheimer's disease (AD) therapy is based on several natural and synthetic compounds that act as acetylcholinesterase (AChE) and N-methyl-D-aspartate receptor (NMDA) ligands that have limited efficiency in relieving AD symptoms. Recent studies show that inhibitors isolated from Mentha spicata L. subsp. spicata are promising for AD therapy. OBJECTIVE: We aimed to identify novel and more potent phytopharmaceutical compounds for AD treatment by taking into account the compounds from Mentha spicata L. subsp. spicata essential oil. METHOD: We generated structure-activity relationship (SAR) models that predict the biological activities of 14 Mentha spicata L. subsp. spicata compounds on AChE and NMDA by comparing their molecular features with those of the three conventional ligands: donepezil, galantamine and memantine. RESULTS: The most relevant descriptors for predicting the biological activities of considered compounds are solvent accessible area and their subdivided, hydrophobicity, energy of frontier molecular orbitals and counts of the aromatic ring and rotatable bounds. 1,8-cineole, the main compound from Mentha spicata L. subsp. spicata essential oil, resulted to be similar with memantine and dissimilar with donepezil in respect to hidrophobicity (logP1,8-cineole=2.95, logPmemantine=2.81, logPdonepezil=4.11), the energy of LUMO (eLUMO1,8-cineole=3.01 eV, eLUMOmemantine=3.35 eV, eLUMOdonepezil=-0.35 eV) and the solvent accessible surface areas over all hydrophobic (SA_H1,8-cineole= 350 Å2, SA_Hmemantine= 358 Å2, SA_Hdonepezil= 655 Å2) or polar atoms (SA_P1,8-cineole= 4 Å2, SA_Pmemantine=10 Å2, SA_Pdonepezil=44.62 Å2). CONCLUSION: Our results point towards 1,8-cineole as a good candidate for NMDA antagonism, with a weaker AChE inhibitory effect. Our results may be useful in establishing new therapeutic strategies for neurological disorders.


Assuntos
Inibidores da Colinesterase/farmacologia , Cicloexanóis/química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Galantamina/química , Indanos/química , Memantina/química , Mentha spicata/química , Monoterpenos/química , Óleos Voláteis/farmacologia , Piperidinas/química , Inibidores da Colinesterase/química , Cicloexanóis/farmacologia , Donepezila , Eucaliptol , Antagonistas de Aminoácidos Excitatórios/química , Galantamina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Indanos/farmacologia , Memantina/farmacologia , Modelos Moleculares , Estrutura Molecular , Monoterpenos/farmacologia , Óleos Voláteis/química , Piperidinas/farmacologia , Relação Estrutura-Atividade
12.
Curr Drug Deliv ; 13(2): 202-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26563942

RESUMO

Antimicrobial peptides, also called body defense peptides, are chemical structures widely distributed across the animal and vegetal kingdoms that have a fundamental role as part of the immune system. These peptides are used against a wide range of pathogens, such as Gram-negative and - positive bacteria, fungi and viruses, etc. Their action spectrum makes them important for the pharmaceutical industry, as they could represent templates for the design of new and more potent structures by using drug design and drug delivery systems. Here we present the antimicrobial activity against Bacillus subtilis (expressed as minimal inhibitory concentration values) for 33 mastoparan analogs and their new derivatives by quantitative structure-activity relationship method (2D, aligned and also non-aligned 3D-QSAR). We establish the contribution to antimicrobial activity of molecular descriptors like hydrophobicity, hydrogen bond donor and steric hindrance, correlated with contributions from the membrane environment (sodium, potassium, chloride ions). Also the studies of HIV-1 fusion inhibitor sifuvirtide and its analogs are presented in context of interaction with lipid structures during fusion and delivery of these drugs.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Peptídeos/análise , Peptídeos/farmacologia , Venenos de Vespas/análise , Venenos de Vespas/farmacologia , Antibacterianos/química , Antivirais/química , Bacillus subtilis/efeitos dos fármacos , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intercelular , Lipídeos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/química , Relação Quantitativa Estrutura-Atividade , Venenos de Vespas/química
13.
Int J Mol Sci ; 15(11): 21381-400, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25411801

RESUMO

Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN) and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2) to active closed (C-Mad2) conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20) or Mad1) were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR) method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided) and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53-0.65) and fitted correlation r2 (0.82-0.90). Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.


Assuntos
Doenças Genéticas Inatas/genética , Proteínas Mad2/genética , Mutação/genética , Carcinogênese/genética , Proteínas Cdc20/genética , Regulação da Expressão Gênica/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Estrutura Terciária de Proteína/genética , Relação Quantitativa Estrutura-Atividade
14.
Curr Comput Aided Drug Des ; 10(2): 168-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24724894

RESUMO

In normal cells, the accuracy of chromosome segregation which assures cells euploidy depends on mitosis mechanics and on proper functioning of a specific complex of proteins represented by the error-checking spindle assembly checkpoint (SAC). SAC proteins are deeply involved in correct cell divisions, but some of these, such as mitotic arrest-deficient proteins (Mad1 and Mad2), are critical. Mad1 and Mad2 are involved in preventing "wrong" cellular divisions which lead to cellular aneuploidy and are recognized as inductors of genetic disorders, as well as activators of oncoproteins. To clarify aneuploidy involvement in the evolution of cancer or other genetic disorders, structural and functional specificity of spindle checkpoint proteins have been analyzed, but the process is still poorly understood. In order to better understand SAC proteins involvement in initiation of cancer and other genetic disorders, here we review studies that conducted to relevant structural and functional information regarding these proteins. The results of these studies suggest that minor changes in structure and functionality of SAC proteins are able to generate aneuploidy. Therefore, a deeper understanding of Mad1 and Mad2 structural changes obtained by experimental and theoretical studies could open new perspectives of genetic medicine.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Mad2/química , Proteínas Mad2/genética , Neoplasias/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Aneuploidia , Animais , Proteínas de Ciclo Celular/metabolismo , Predisposição Genética para Doença , Humanos , Proteínas Mad2/metabolismo , Modelos Moleculares , Mutação , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo
15.
J Enzyme Inhib Med Chem ; 29(4): 599-610, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24047148

RESUMO

CONTEXT: Glycogen synthase kinase-3 (GSK-3) overactivity was correlated with several pathologies including type 2 diabetes mellitus, Alzheimer's disease, cancer, inflammation, obesity, etc. OBJECTIVE: The aim of the current investigation was to model the inhibitory activity of maleimide derivatives--inhibitors of GSK-3, to evaluate the impact of alignment on statistical performances of the Quantitative Structure-Activity Relationship (QSAR) and the effect of the template on shape-similarity--binding affinity relationship. MATERIALS AND METHODS: Dragon descriptors were used to generate Projection to Latent Structures (PLS) models in order to identify the structural prerequisites of maleimides to inhibit GSK-3. Additionally, shape/volume structural analysis of binding site interactions was evaluated. RESULTS: Reliable statistics R(2)(Y(CUM)) = 0.938/0.920, Q((2)(Y)(CUM)) = 0.866/0.838 for aligned and alignment free QSAR models and significant (Pearson, Kendall and Spearman) correlations between shape/volume similarity and affinities were obtained. DISCUSSION AND CONCLUSIONS: The crucial structural features modulating the activity of maleimides include topology, charge, geometry, 2D autocorrelations, 3D-MoRSE as well as shape/volume and molecular flexibility.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Maleimidas/química , Maleimidas/farmacologia , Relação Quantitativa Estrutura-Atividade , Bases de Dados de Produtos Farmacêuticos , Relação Dose-Resposta a Droga , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Maleimidas/síntese química , Estrutura Molecular
16.
J Enzyme Inhib Med Chem ; 28(2): 350-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23116520

RESUMO

Dithiocarbamates (DTC) are promising compounds with potential applications in antitumoral and glaucoma therapy. Our aim is to understand molecular features affecting DTC interaction with carbonic anhydrases (CAs), zinc-containing enzymes maintaining acid-base balance in blood and other tissues. To this end, we generate QSAR models based on a compound series containing 25 DTC, inhibitors of four human (h) CAs isoforms: hCA I, II, IX and XII. We establish that critical physicochemical parameters for DTC inhibitory activity are: hydrophobic, electronic, steric, topological and shape. The predictive power of our QSAR models is indicated by significant values of statistical coefficients: cross-validated correlation q(2) (0.55-0.73), fitted correlation r(2) (0.75-0.84) and standard error of prediction (0.47-0.23). Based on the established QSAR equations, we analyse 22 new DTC derivatives and identify DTC dicarboxilic acids derivatives and their esters as potentially improved inhibitors of CA I, II, IX and XII.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Tiocarbamatos/farmacologia , Algoritmos , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Tiocarbamatos/síntese química , Tiocarbamatos/química
17.
Mol Biosyst ; 8(2): 587-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22086548

RESUMO

Antimicrobial peptides are drugs used against a wide range of pathogens which present a great advantage: in contrast with antibiotics they do not develop resistance. The wide spectrum of antimicrobial peptides advertises them in the research and pharmaceutical industry as attractive starting points for obtaining new, more effective analogs. Here we predict the antimicrobial activity against Bacillus subtilis (expressed as minimal inhibitory concentration values) for 33 mastoparan analogs and their new derivatives by a non-aligned 3D-QSAR (quantitative structure-activity relationship) method. We establish the contribution to antimicrobial activity of molecular descriptors (hydrophobicity, hydrogen bond donor and steric), correlated with contributions from the membrane environment (sodium, potassium, chloride). Our best QSAR models show significant cross-validated correlation q(2) (0.55-0.75), fitted correlation r(2) (greater than 0.90) coefficients and standard error of prediction SDEP (less than 0.250). Moreover, based on our most accurate 3D-QSAR models, we propose nine new mastoparan analogs, obtained by computational mutagenesis, some of them predicted to have significantly improved antimicrobial activity compared to the parent compound.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Peptídeos/farmacologia , Relação Quantitativa Estrutura-Atividade , Venenos de Vespas/farmacologia , Anti-Infecciosos/farmacologia , Cloretos/química , Simulação por Computador , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intercelular , Testes de Sensibilidade Microbiana , Modelos Moleculares , Potássio/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA