Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861886

RESUMO

Despite benefits such as lower water and working volume requirements, thermophilic high solids anaerobic digestion (THSAD) often fails due to the rapid build-up of volatile fatty acids (VFAs) and the associated drop in pH. Use of conductive materials (CM) can promote THSAD through stimulation of direct interspecies electron transfer (DIET), while the need for their constant dosing due to poor separation from effluent impairs economic feasibility. This study used an approach of spatially separating magnetite and granular activated carbon (GAC) from the organic fraction of municipal solid waste (OFMSW) in a single reactor for THSAD. GAC and magnetite addition could both mitigate the severe inhibition of methanogenesis after VFAs build-up to ∼28-30 g/L, while negligible methane production was observed in the control group. The highest methane yield (286 mL CH4/g volatile solids (VS)) was achieved in magnetite-added reactors, while the highest maximum CH4 production rates (26.38 mL CH4/g VS/d) and lowest lag-phase (2.83 days) were obtained in GAC-added reactors. The enrichment of GAC and magnetite biofilms with various syntrophic and potentially electroactive microbial groups (Ruminiclostridium 1, Clostridia MBA03, Defluviitoga, Lentimicrobiaceae) in different relative abundances indicates the existence of specific preferences of these groups for the nature of CM. According to predicted basic metabolic functions, CM can enhance cellular processes and signals, lipid transport and metabolism, and methane metabolism, resulting in improved methane production. Rearrangement of metabolic pathways, formation of pili-like structures, enrichment of biofilms with electroactive groups and a significant improvement in THSAD performance was attributed to the enhancement of the DIET pathway. Promising results obtained in this work due to the spatial separation of the bulk OFMSW and CM can be useful for modeling larger-scale THSAD systems with better recovery of CM and cost-effectiveness.


Assuntos
Reatores Biológicos , Metano , Resíduos Sólidos , Anaerobiose , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Eliminação de Resíduos/métodos , Óxido Ferroso-Férrico/química
2.
J Environ Manage ; 351: 119842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109827

RESUMO

The effect of mix-cultured aerobic denitrifying microorganisms on the water remediation has been extensively explored, but little is known about the performance of mix-cultured low efficiency fungi on denitrification. In this study, two kinds of aerobic denitrifying fungi (Trichoderma afroharzianum H1 and Aspergillus niger C1) were isolated from reservoirs, improved the capacity by mix-cultured. The results showed a difference between northern and southern reservoirs, the dominants of genera were Cystobasidium and Acremonium. The removals of total nitrogen (TN) was 12.00%, 7.53% and 69.33% in Trichoderma afroharzianum H1, Aspergillus niger C1 and mix-cultured (C1 and H1) under the denitrification medium. The contents of ATP and electron transport system activity in mix-cultured amendment were increased by 42.54% and 67.52%, 1.72 and 2.91 times, respectively. Besides, the raw water experiment indicated that TN removals were 24.05%, 12.66% and 73.42% in Trichoderma afroharzianum H1, Aspergillus niger C1 and mix-cultured. The removals of dissolved organic carbon in mix-cultured were increased 35.02% and 50.46% compared to Trichoderma afroharzianum H1 and Aspergillus niger C1. Therefore, mix-cultured of two low efficiency aerobic denitrifying fungi has been considered as a novelty perspective for mitigation of drinking water source.


Assuntos
Aspergillus , Água Potável , Hypocreales , Micobioma , Desnitrificação , Aerobiose , Nitrogênio
3.
Sci Total Environ ; 904: 166883, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690764

RESUMO

Mature landfill leachate is a refractory organic wastewater, and needs physical and chemical pretreatments contemporaneously, e.g. iron-carbon micro-electrolysis (IC-ME). In this study, a novel iron-carbon (Fe-C) material was synthesized from waste activated sludge to be utilized in IC-ME for landfill leachate treatment. The pyrolysis temperature, mass ratio of iron to carbon, and solid-liquid ratio in leachate treatment were optimized as 900 °C with 1.59 and 34.7 g/L. Under these optimal conditions, the chemical oxygen demand (COD) removal efficiency reached 79.44 %, which was 2.6 times higher than that of commercial Fe-C material (30.1%). This excellent COD removal performance was indicated to a better mesoporous structure, and uniform distribution of zero-valent iron in novel Fe-C material derived from sludge. The contribution order of COD removal in IC-ME treatment for landfill leachate was proven as coagulation, adsorption, and redox effects by a contrast experiment. The removal of COD includes synthetic organic compounds, e.g. carcinogens, pharmaceuticals and personal care products. The contents of CHO, CHON, and CHOS compounds of dissolved organic matter (DOM) in the leachate were decreased, and both the molecular weight and unsaturation of lipids, lignin, and tannic acids concentration were also reduced. Some newly generated small molecular DOM in the treated leachate further confirmed the existence of the redox effect to degrade DOM in leachate. The total cost of sludge-derived Fe-C material was only USD$ 152.8/t, which could save 76% of total compared with that of commercial Fe-C materials. This study expands the prominent source of Fe-C materials with excellent performance, and deepens the understanding of its application for leachate treatment.

4.
Chemosphere ; 313: 137613, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549508

RESUMO

Nanobubble water (NBW) could improve methane production from anaerobic digestion (AD) of corn straw without secondary contamination. In this study, the effect of carbon dioxide nanobubble water (CO2-NBW) volumes (0%, 25%, 50%, 75%, 100%) on methane production from corn straw was investigated. The results showed that addition of CO2-NBW could improve methane production and promote substrate degradation in AD process. The highest cumulative methane production of 132.16 mL g-1VSadded was obtained in the 100% CO2-NBW added reactor, which was 17% higher than that in the control group. Additionally, the addition of CO2-NBW could mitigate the sharp decrease in pH by acting as a buffer. CO2-NBW could also enhance microorganism activity throughout the AD process. The electron transport system (ETS) activity was increased by 23%, while the ß-glucosidase, dehydrogenase (DHA), and coenzyme F420 activities were increased by 15%, 23%, and 11%, respectively, at optimum addition of CO2-NBW. Meanwhile, addition of CO2-NBW accelerated the production and consumption of reducing sugar and volatile fatty acids (VFAs), promoting the reduction rates of TS (Total solid) and VS (Volatile solid).


Assuntos
Reatores Biológicos , Zea mays , Anaerobiose , Dióxido de Carbono , Água , Metano , Suplementos Nutricionais , Biocombustíveis
5.
Environ Res ; : 114950, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463995

RESUMO

Source apportionment is critical but remains largely unknown for heavy metals in the soil surrounding black shale mining areas. Herein, the distribution, potential hazards, and sources of heavy metals in the soil around a black shale post-mining site were investigated. The content of Cadmium (Cd) in topsoil samples (0.77-50.29 mg/kg, N = 84) all exceeded the Chinese agricultural soil standard (0.3 mg/kg). The majority of Cd in the soil existed in the mobile fraction posing a high potential risk to the local ecosystem. and Zn and V in soils existed in the residual form. The percentages of HQing > 1 and 0.6-1 for Vanadium (V) in soil were 8.3% and 31.0%, respectively, and the percentages of HQing > 0.5 for Cd in soil were 3.7% showed that V and Cd were the main factors that increased the potential non-cancer risk. Five potential sources were identified using the geostatistical and positive matrix factorization (PMF) model, among which Cd was mainly derived from the short-term weathering process of black shale (81.06%), most Zinc (Zn) was from the long-term weathering of black shale (67.35%), whereas V was contributed by many factors including long-term weathering of black shale (42.99%), traffic emissions (31.12%) and agricultural activities (21.05%). This study reveals the potential risk and identifies the sources of heavy metals, which is helpful to manage the contaminated soil in black shale mining areas.

6.
Bioresour Technol ; 364: 128068, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202280

RESUMO

Ionic liquids (ILs) have been considered as promising alternatives to traditional reagent for lignocellulosic biomass pretreatment because of their tunable physicochemical and "green" properties. In the study, the influence of 1-Butyl-3-methylimidazolium acetate ([Bmim]acetate) pretreatment of giant reed on H2 yield improvement via photo-fermentation (PF) was evaluated. Under the optimal pretreatment conditions (6 g/L [Bmim]acetate at 70 °C for 4 h), the delignification of giant reed was up to 26.7 %. In addition, the sugar yield (9.5 g/L) and hydrogen yield (72.3 mL/g TS) from giant reed were enhanced by 1.7-fold and 61.7 % over those of untreated giant reed, respectively. Moreover, ternary analysis showed that retention time had the strongest effect on delignification, sugar yield and hydrogen yield of giant reed compared to pretreatment temperature and [Bmim]acetate loading. These experimental results indicated that [Bmim]acetate pretreatment of giant reed is an effective approach to enhance the hydrogen yield via PF.

7.
Int J Food Microbiol ; 381: 109890, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36095867

RESUMO

Blueberry (Vaccinium spp.) is one of the five major healthy foods for humans and is recognized as the "king of the world fruit", which has attracted great interest in the phytogenic prebiotics market. Blueberry fruit is favored for its delicious taste and its various functional ingredients (organic acids, phenolics, minerals and vitamins) with multitherapeutic value (antioxidant, anti-inflammatory, anticancer, neuroprotective and vision improvement properties). However, fresh blueberries are highly perishable since they are vulnerable to mechanical damage and microbial decay, resulting in a short shelf life and inevitable subsequent economic losses. Due to the strong seasonal availability and limited storage period of blueberries, their derived bioactive products have emerged as functional foods. Novel food developments that are currently available include blueberry fruit juice, wine, vinegar, jam, dried fruit, pulp powder, colorant and flavoring additives used in cake, biscuit, bread, yogurt, and jelly. This review systematically describes the current status of blueberry fruit as bioactive ingredients and valuable food products with greater nutraceutical health potential of blueberries.


Assuntos
Mirtilos Azuis (Planta) , Ácido Acético , Antioxidantes , Frutas , Humanos , Pós , Vitaminas
8.
Chemosphere ; 307(Pt 1): 135650, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35835242

RESUMO

By-products of the meat processing industry which are often discarded as waste are excellent protein substrates for producing bioactive peptides through enzymatic hydrolysis. These peptides have tremendous potential for the development of functional food products but there is scanty information about the regulations on bioactive peptides or products in various parts of the world. This review focuses on the diverse bioactive peptides identified from different meat and meat by-products, their bioactivity and challenges associated in their production as well as factors limiting their effective commercialization. Furthermore, this report provides additional information on the possible toxic peptides formed during production of the bioactive peptides, which enables delineation of associated safety and risk. The regulatory framework in place for bioactive peptide-based foods in different jurisdictions and the future research directions are also discussed. Uniform quality, high cost, poor sensory acceptance, lack of toxicological studies and clinical evidence, paltry stability, and lack of bioavailability data are some of the key challenges hindering commercial advancement of bioactive peptide-based functional foods. Absorption, distribution, metabolism and excretion (ADME) studies in rodents, in vitro genotoxicity, and immunogenicity data could be considered as absolute pre-requisites to ensure safety of bioactive peptides. In the absence of ADME and genotoxicity data, long term usage to evaluate safety is highly warranted. Differences in legislations among countries pose challenge in the international trade of bioactive peptides-based functional foods. Harmonization of regulations could be a way out and hence further research in this area is encouraged.


Assuntos
Comércio , Internacionalidade , Alimento Funcional , Carne/análise , Peptídeos/metabolismo
9.
Environ Res ; 213: 113509, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660566

RESUMO

Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day's additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus remediation of such chemicals present even in nano-concentrations should be addressed gravely.


Assuntos
Disruptores Endócrinos , Animais , Biodegradação Ambiental , Ecossistema , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Humanos
10.
Chemosphere ; 303(Pt 1): 134956, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35588873

RESUMO

Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo
11.
Chemosphere ; 297: 134181, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35248592

RESUMO

Catalytic pyrolysis has been widely explored for bio-oil production from lignocellulosic biomass owing to its high feasibility and large-scale production potential. The aim of this review was to summarize recent findings on bio-oil production through catalytic pyrolysis using lignocellulosic biomass as feedstock. Lignocellulosic biomass, structural components and fundamentals of biomass catalytic pyrolysis were explored and summarized. The current status of bio-oil yield and quality from catalytic fast pyrolysis was reviewed and presented in the current review. The potential effects of pyrolysis process parameters, including catalysts, pyrolysis conditions, reactor types and reaction modes on bio-oil production are also presented. Techno-economic analysis of full-scale commercialization of bio-oil production through the catalytic pyrolysis pathway was reviewed. Further, limitations associated with current practices and future prospects of catalytic pyrolysis for production of high-quality bio-oils were summarized. This review summarizes the process of bio-oil production from catalytic pyrolysis and provides a general scientific reference for further studies.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Catálise , Temperatura Alta , Lignina , Óleos de Plantas , Polifenóis
12.
Bioengineered ; 12(1): 8247-8258, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34814795

RESUMO

Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.


Assuntos
Matadouros , Materiais Biocompatíveis , Biotecnologia/métodos , Resíduos Industriais , Agricultura , Animais , Gado , Aves Domésticas , Eliminação de Resíduos
13.
Chemosphere ; 284: 131427, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34323796

RESUMO

Apple pomace, the residue which is left out after processing of apple serves as a potential carbon source for the production of biopolymer, PHA (poly-hydroxyalkanoates). It is rich in carbohydrates, fibers and polyphenols. Utilization of these waste resources has dual societal benefit-waste management and conversion of waste to an eco-friendly biopolymer. This will lower the overall economics of the process. A major limitation for the commercialization of biopolymer in comparison with petroleum derived polymer is the high cost. This article gives an overview of valorization of apple pomace for the production of biopolymer, various strategies adopted, limitations as well as future perspectives.


Assuntos
Malus , Poli-Hidroxialcanoatos , Biopolímeros , Carbono , Resíduos Industriais
14.
Chemosphere ; 283: 131234, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153916

RESUMO

The potential application of silage fermentation on abandoned fresh tea leaves (AFTL) was investigated. Dynamic profiles of fermentation-related components, characteristic components and the bacterial community of AFTL during ensiling were analysed. The results showed that after ensiling for 60 days, the concentrations of lactic, acetic and propionic acid increased, whereas a high pH value (4.80) and NH3-N content (106 g/kg TN) were detected. Characteristic components, including caffeine, polyphenols, theanine and catechins, were well preserved. The microbial community changed significantly, and Lactobacillus (63.6%) became the dominant phylum. Spearman rank correlation revealed a positive correlation between lactic acid concentration and the abundance of Lactobacillus (63.6%) and Klebsiella (25.0%), whereas the abundance of Klebsiella was negatively correlated with catechin concentration. In conclusion, ensiling could be an effective utilization for AFTL and provides a new idea for utilizing idle resources on tea plantations.


Assuntos
Bactérias , Silagem , Bactérias/genética , Fermentação , Folhas de Planta , Silagem/análise , Chá
15.
Bioresour Technol ; 320(Pt A): 124174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33147529

RESUMO

In this study, the combined bacteria (CB) were constructed by Phanerochaete chrysosporium, Trametes versicolor and Pleurotus ostreatus, which have a good ability to degrade lignocellulose, and the optimum degradation conditions and internal degradation mechanism of combined bacteria were investigated. The results showed that under conditions of temperature (32 °C), pH (3.5), solid-liquid ratio (10%), culture time (20 d), the degradation rates of lignin, cellulose and hemicellulose were 43.36%, 31.29%, 48.36%, respectively. The construction of combined bacteria significantly enhances the degradation ability of lignocellulose, and showed good correlation and coordination mechanism.


Assuntos
Phanerochaete , Pleurotus , Celulose , Lignina , Polyporaceae , Trametes , Zea mays
16.
Bioresour Technol ; 320(Pt A): 124332, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157447

RESUMO

Aerobic hydrolysis of stover before anaerobic digestion is beneficial to improve the biodegradability of corn stover. Aerobic hydrolysis of corn stover at 43 °C was conducted to investigate the effects of hydrolysis time (0 h, 8 h, 16 h, and 24 h) on the degradation of lignocellulose from corn stover and material conversion. Further anaerobic digestion and energy consumption analysis with the digestion temperature of 36 °C were carried out. The accumulation rate of volatile fatty acids began to slow down after 16 h of hydrolysis, and the concentration of acetic acid reached 221.85 mmol/L at 24 h of hydrolysis. The degradation rate of lignocellulose was obviously increased after hydrolysis. When the hydrolysis time was 16 h, it reached the maximum cumulative methane production with 268.75 ml/g VS. In terms of biogas production and energy conversion efficiency, it is more appropriate to choose 16 h as hydrolysis time in biogas engineering.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Hidrólise , Zea mays
17.
Bioresour Technol ; 303: 122952, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32050126

RESUMO

The effectiveness of specific concentrations of bamboo biochar (BB) on nutrient conservation based on gaseous emissions during poultry manure composting was investigated. The results indicate that the total carbon and nitrogen losses were significantly reduced with elevated of biochar from 542.8 to 148.9% and 53.5 to 12.6% (correspondingly with an additive of 0%, 2%, 4%, 6% and 8% to 10% BB dry weight based). The primary contributor was CO2 and NH3 losses (542.3-148.8% and 47.8-10.81%). The enzyme activities related to carbon and nitrogen metabolism indicated a positive and significantly enhanced with high concentration biochar amended composting. Simultaneously, the alteration of total organic carbon and total Kjeldahl nitrogen as well as maturity indexes during ultimate compost also confirmed a high quality product under higher content biochar amended composting. Carbon and nitrogen were best preserved with 10%BB and produced a superior final product. The analysis of a network and heat map illustrated the correlation of gaseous and physicochemical elements as well as enzyme activities, with an intersection of 68.81%.


Assuntos
Compostagem , Gases de Efeito Estufa , Sasa , Animais , Carvão Vegetal , Esterco , Nitrogênio , Aves Domésticas , Solo
18.
J Hazard Mater ; 389: 121908, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879100

RESUMO

The effects of chicken manure biochar (CMB) and chicken manure integrated microbial consortium (CMMC) as co-amendments were assessed on compost maturity and reduction of greenhouse gases and ammonia (NH3) emissions during chicken manure composting. Composting was conducted using six combinations of CMB and CMCC (0 % CMB + 0 % CMMC, 0 % CMB + 10 % CMMC, 2 % CMB + 10 % CMMC, 4 % CMB + 10 % CMMC, 6 % CMB + 10 % CMMC, 10 % CMB + 10 % CMMC added on a dry weight basis) in six polyvinyl chloride composting reactors for 42 days under an aerobic environment. Co-amendment of CMB and CMMC extended the thermophilic stage and promoted compost maturity. The release of greenhouse gases [nitrous oxide (N2O) and methane (CH4)] and NH3 from treatments co-amended by CMB and CMMC were reduced by 19.0-27.4 %, 9.3-55.9 % and 24.2-56.9 %, respectively, compared with the control. In addition, a redundancy analysis showed that the C/N ratio and temperature had a significant relationship with greenhouse gases and NH3 emissions among all physiochemical characteristics.


Assuntos
Carvão Vegetal/metabolismo , Gases de Efeito Estufa/metabolismo , Esterco/microbiologia , Animais , Galinhas , Compostagem/métodos
19.
Bioresour Technol ; 286: 121377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31039466

RESUMO

In order to investigate the improvement of Diatomite (DM) on the production of cleaner composting, reflected by emission of NH3 and greenhouse gases (GHGs), three dosages of DM (0%, 5% and 10%) were added into mixture of pig manure and sawdust for 42 days composting. Addition of DM promoted the transformation of organic matter and improved the quality of end product. Meanwhile, it was confirmed by the increase of NO3--N formation and nitrogen conservation. Besides, adding DM aided on reducing emission of CH4, N2O and NH3 by 18.27%-30.41%, 26.89%-84.16% and 10.41%-23.70%, respectively. Furthermore, the DM had a positive effect on the maturity of compost products, reflecting by GI value and HA/FA. Consequently, through the factor analysis, 10% was suggested to improve the quality of end product and reduce nitrogen loss as well as GHGs emission.


Assuntos
Compostagem , Gases de Efeito Estufa , Animais , Terra de Diatomáceas , Esterco , Metano , Nitrogênio , Solo , Suínos
20.
Bioresour Technol ; 270: 467-475, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245316

RESUMO

The aim of this study was investigated the effects of acidic additives apple pomace (AP), citric acid (CA), elemental sulphur (ES), phosphoric acid (PA), magnesium hydrogen phosphate (PM), and calcium superphosphate (CP)) on N conservation and greenhouse gas (GHG) emissions during sewage sludge composting. Results showed that adding the additives have no negative effects on compost hygienisation, but could improve the N conservation. Treatments with additives showed 2.56-5.48% N loss of initial N, which is lower than the control (9.73%). Compared to other compost products, ES- and PA-treatments had the lower NH3 volatilizations (0.80% and 0.98% of initial N, respectively) and germination index values (0.52 and 0.74, respectively), while the higher N2O emissions (2.48% and 2.29% of initial N, respectively) and salinities. Comprehensive evolution of N loss, GHG emissions and compost maturity in this study, the feasibility of using AP, CA, and PM in high-quality compost production is promising.


Assuntos
Compostagem , Gases de Efeito Estufa/química , Nitrogênio/química , Esgotos , Melhoria de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA