Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711119

RESUMO

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Assuntos
Oxirredutases do Álcool , Proteínas de Ligação a DNA , Melanoma , Humanos , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479814

RESUMO

Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.


Assuntos
Citocinese , Mitose , Complexo de Golgi , Centrossomo
3.
Front Cell Dev Biol ; 10: 925228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813197

RESUMO

The Golgi complex has a central role in the secretory traffic. In vertebrate cells it is generally organized in polarized stacks of cisternae that are laterally connected by membranous tubules, forming a structure known as Golgi ribbon. The steady state ribbon arrangement results from a dynamic equilibrium between formation and cleavage of the membrane tubules connecting the stacks. This balance is of great physiological relevance as the unlinking of the ribbon during G2 is required for mitotic entry. A block of this process induces a potent G2 arrest of the cell cycle, indicating that a mitotic "Golgi checkpoint" controls the correct pre-mitotic segregation of the Golgi ribbon. Then, after mitosis onset, the Golgi stacks undergo an extensive disassembly, which is necessary for proper spindle formation. Notably, several Golgi-associated proteins acquire new roles in spindle formation and mitotic progression during mitosis. Here we summarize the current knowledge about the basic principle of the Golgi architecture and its functional relationship with cell division to highlight crucial aspects that need to be addressed to help us understand the physiological significance of the ribbon and the pathological implications of alterations of this organization.

4.
Tissue Cell ; 49(2 Pt A): 133-140, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27894594

RESUMO

The Golgi apparatus is a central organelle of the secretory pathway involved in the post-translational modification and sorting of lipids and proteins. In mammalian cells, the Golgi apparatus is composed of stacks of cisternae organized in polarized manner, which are interconnected by membrane tubules to constitute the Golgi ribbon, located in the proximity of the centrosome. Besides the processing and transport of cargo, the Golgi complex is actively involved in the regulation of mitotic entry, cytoskeleton organization and dynamics, calcium homeostasis, and apoptosis, representing a signalling platform for the control of several cellular functions, including signalling initiated by receptors located at the plasma membrane. Alterations of the conventional Golgi organization are associated to many disorders, such as cancer or different neurodegenerative diseases. In this review, we examine the functional implications of modifications of Golgi structure in neurodegenerative disorders, with a focus on the role of Golgi fragmentation in the development of Alzheimer's disease. The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.


Assuntos
Doença de Alzheimer/genética , Complexo de Golgi/genética , Transporte Proteico/genética , Doença de Alzheimer/patologia , Apoptose/genética , Sinalização do Cálcio/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Complexo de Golgi/patologia , Complexo de Golgi/ultraestrutura , Humanos , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional/genética
5.
PLoS One ; 10(5): e0127614, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996923

RESUMO

Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.


Assuntos
ADP Ribose Transferases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Neisseria meningitidis/metabolismo , Actinas/metabolismo , Animais , Apoptose , Endocitose , Células Epiteliais/patologia , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico
6.
Int Rev Cell Mol Biol ; 275: 1-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19491051

RESUMO

The controlled degradation of the extracellular matrix is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years toward understanding the basic molecular components and their ultrastructural features; generating substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction, and cytoskeleton regulation machineries. The next level will be to understand whether they may also represent valid biological targets to help advance the anticancer drug discovery process. Current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology.


Assuntos
Extensões da Superfície Celular/fisiologia , Biologia Molecular , Animais , Comunicação Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Matriz Extracelular/fisiologia , Humanos , Células Tumorais Cultivadas
7.
J Cell Mol Med ; 13(8B): 1728-1740, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19175685

RESUMO

Invadopodia are proteolytically active protrusions formed by invasive tumoural cells when grown on an extracellular matrix (ECM) substratum. Clearly, invadopodia are specialized membrane domains acting as sites of signal transduction and polarized delivery of components required for focalized ECM degradation. For these reasons, invadopodia are a model to study focal ECM degradation by tumour cells. We investigated the features of invadopodia membrane domains and how altering their composition would affect invadopodia biogenesis and function. This was achieved through multiple approaches including manipulation of the levels of cholesterol and other lipids at the plasma membrane, alteration of cholesterol trafficking by acting on caveolin 1 expression and phosphorylation. We show that cholesterol depletion impairs invadopodia formation and persistence, and that invadopodia themselves are cholesterol-rich membranes. Furthermore, the inhibition of invadopodia formation and ECM degradation after caveolin 1 knock-down was efficiently reverted by simple provision of cholesterol. In addition, the inhibitory effect of caveolin 3(DGV) expression, a mutant known to block cholesterol transport to the plasma membrane, was similarly reverted by provision of cholesterol. We suggest that invadopodia biogenesis, function and structural integrity rely on appropriate levels of plasma membrane cholesterol, and that invadopodia display the properties of cholesterol-rich membranes. Also, caveolin 1 exerts its function in invadopodia formation by regulating cholesterol balance at the plasma membrane. These findings support the connection between cholesterol, cancer and caveolin 1, provide further understanding of the role of cholesterol in cancer progression and suggest a mechanistic framework for the proposed anti-cancer activity of statins, tightly related to their blood cholesterol-lowering properties.


Assuntos
Caveolinas/fisiologia , Colesterol/metabolismo , Lipídeos de Membrana/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Melanoma/patologia , Invasividade Neoplásica , Metástase Neoplásica
8.
Cancer Metastasis Rev ; 28(1-2): 137-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19153671

RESUMO

Invasive tumor-derived or transformed cells, cultured on a flat extracellular matrix substratum, extend specialized proteolytically active plasma membrane protrusions. These structures, termed invadopodia, are responsible for the focal degradation of the underlying substrate. Considerable progress has been made in recent years towards understanding the basic molecular components and regulatory circuits and the ultrastructural features of invadopodia. This has generated substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction and cytoskeleton regulation machineries; hopes are high that they may also represent valid biological targets to help advance the anti-cancer drug discovery process. Current knowledge will be reviewed here with an emphasis on the many open questions in invadopodia biology.


Assuntos
Antineoplásicos/farmacologia , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Descoberta de Drogas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Biológicos , Invasividade Neoplásica , Transdução de Sinais
9.
Cancer Res ; 69(3): 747-52, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19141649

RESUMO

Invadopodia are proteolytically active membrane protrusions that extend from the ventral surface of invasive tumoral cells grown on an extracellular matrix (ECM). The core machinery controlling invadopodia biogenesis is regulated by the Rho GTPase Cdc42. To understand the upstream events regulating invadopodia biogenesis, we investigated the role of Fgd1, a Cdc42-specific guanine nucleotide exchange factor. Loss of Fgd1 causes the rare inherited human developmental disease faciogenital dysplasia. Here, we show that Fgd1 is required for invadopodia biogenesis and ECM degradation in an invasive cell model and functions by modulation of Cdc42 activation. We also find that Fgd1 is expressed in human prostate and breast cancer as opposed to normal tissue and that expression levels matched tumor aggressiveness. Our findings suggest a central role for Fgd1 in the focal degradation of the ECM in vitro and, for the first time, show a connection between Fgd1 and cancer progression, proposing that it might function during tumorigenesis.


Assuntos
Neoplasias da Mama/patologia , Extensões da Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Extensões da Superfície Celular/patologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Regulação para Cima , Proteína cdc42 de Ligação ao GTP/metabolismo
10.
J Cell Sci ; 121(Pt 3): 369-78, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18198194

RESUMO

Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. Although many molecular components have been defined, less is known of the formation and regulation of invadopodia. The multidomain protein cortactin, which is involved in the regulation of actin polymerisation, is one such component, but how cortactin is modulated to control the formation of invadopodia has not been elucidated. Here, a new invadopodia synchronization protocol is used to show that the cortactin N-terminal acidic and SH3 domains, involved in Arp2/3 complex and N-WASP binding and activation, respectively, are both required for invadopodia biogenesis. In addition, through a combination of RNA interference and a wide array of cortactin phosphorylation mutants, we were able to show that three convergent regulatory inputs based on the regulation of cortactin phosphorylation by Src-family kinases, Erk1/Erk2 and PAK are necessary for invadopodia formation and extracellular matrix degradation. These findings suggest that cortactin is a scaffold protein bringing together the different components necessary for the formation of the invadopodia, and that a fine balance between different phosphorylation events induces subtle changes in structure to calibrate cortactin function.


Assuntos
Extensões da Superfície Celular/fisiologia , Cortactina/fisiologia , Matriz Extracelular/fisiologia , Invasividade Neoplásica/fisiopatologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Extensões da Superfície Celular/patologia , Cortactina/antagonistas & inibidores , Cortactina/química , Cortactina/genética , Primers do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Melanoma/patologia , Melanoma/fisiopatologia , Estrutura Terciária de Proteína , Interferência de RNA , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Quinases Ativadas por p21/metabolismo , Domínios de Homologia de src , Quinases da Família src/metabolismo
11.
Eur J Cell Biol ; 85(12): 1217-31, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17010475

RESUMO

The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/fisiologia , Matriz Extracelular/metabolismo , Actinas/ultraestrutura , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Estruturas da Membrana Celular/fisiologia , Estruturas da Membrana Celular/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Matriz Extracelular/ultraestrutura , Humanos , Melanoma/fisiopatologia , Invasividade Neoplásica/fisiopatologia , Neoplasias Cutâneas/fisiopatologia
12.
Eur J Cell Biol ; 85(3-4): 159-64, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16546558

RESUMO

The controlled degradation of extracellular matrix is crucial in physiological and pathological cell invasion alike. In cultured cells, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years towards understanding the basic molecular components and the ultrastructural features of invadopodia. This current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology. Considering the substantial interest and momentum in the field, the need for an operational framework to correctly define and identify invadopodia will also be discussed.


Assuntos
Extensões da Superfície Celular/fisiologia , Animais , Extensões da Superfície Celular/ultraestrutura , Matriz Extracelular/fisiologia , Humanos , Microscopia Confocal , Modelos Biológicos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA