Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 16: 226, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26983574

RESUMO

BACKGROUND: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells. METHODS: To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing. RESULTS: We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c. CONCLUSION: Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis.


Assuntos
Biomarcadores Tumorais/biossíntese , Glioblastoma/genética , MicroRNAs/biossíntese , Receptor Notch2/biossíntese , Proteínas Repressoras/biossíntese , Biomarcadores Tumorais/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioblastoma/patologia , Humanos , Receptor Notch2/genética , Proteínas Repressoras/genética
2.
Biochim Biophys Acta ; 1849(8): 955-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079690

RESUMO

The three-dimensional architecture of genomes provides new insights about genome organization and function, but many aspects remain unsolved at the local genomic scale. Here we investigate the regulation of two erythroid-specific loci, a folate receptor gene (FOLR1) and the ß-globin gene cluster, which are separated by 16kb of constitutive heterochromatin. We found that in early erythroid differentiation the FOLR1 gene presents a permissive chromatin configuration that allows its expression. Once the transition to the next differentiation state occurs, the heterochromatin spreads into the FOLR1 domain, concomitant with the dissociation of CTCF from a novel binding site, thereby resulting in irreversible silencing of the FOLR1 gene. We demonstrate that the sequences surrounding the CTCF-binding site possess classical insulator properties in vitro and in vivo. In contrast, the chicken cHS4 ß-globin insulator present on the other side of the heterochromatic segment is in a constitutive open chromatin configuration, with CTCF constantly bound from the early stages of erythroid differentiation. Therefore, this study demonstrates that the 16kb of constitutive heterochromatin contributes to silencing of the FOLR1 gene during erythroid differentiation.


Assuntos
Receptor 1 de Folato/genética , Loci Gênicos , Elementos Isolantes/fisiologia , Globinas beta/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Transformada , Embrião de Galinha , Galinhas , Cromatina/genética , Cromatina/metabolismo , Eritropoese/genética , Receptor 1 de Folato/metabolismo , Regulação da Expressão Gênica , Heterocromatina/genética , Heterocromatina/metabolismo
3.
BMC Cancer ; 11: 232, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663659

RESUMO

BACKGROUND: Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. METHODS: To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. RESULTS: We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. CONCLUSIONS: This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.


Assuntos
Metilação de DNA/fisiologia , Genes do Retinoblastoma , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/fisiologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , DNA de Neoplasias/química , DNA de Neoplasias/genética , Decitabina , Regulação para Baixo/genética , Genes Reporter , Glioma/patologia , Células HeLa , Humanos , Ácidos Hidroxâmicos/farmacologia , Células K562/química , Mutação , Conformação de Ácido Nucleico , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Análise de Sequência de DNA , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA