Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1007070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405710

RESUMO

Leishmania parasites harbor a unique network of circular DNA known as kinetoplast DNA (kDNA). The role of kDNA in leishmania infections is poorly understood. Herein, we show that kDNA delivery to the cytosol of Leishmania major infected THP-1 macrophages provoked increased parasite loads when compared to untreated cells, hinting at the involvement of cytosolic DNA sensors in facilitating parasite evasion from the immune system. Parasite proliferation was significantly hindered in cGAS- STING- and TBK-1 knockout THP-1 macrophages when compared to wild type cells. Nanostring nCounter gene expression analysis on L. major infected wild type versus knockout cells revealed that some of the most upregulated genes including, Granulysin (GNLY), Chitotriosidase-1 (CHIT1), Sialomucin core protein 24 (CD164), SLAM Family Member 7 (SLAMF7), insulin-like growth factor receptor 2 (IGF2R) and apolipoprotein E (APOE) were identical in infected cGAS and TBK1 knockout cells, implying their involvement in parasite control. Amlexanox treatment (a TBK1 inhibitor) of L. major infected wild type cells inhibited both the percentage and the parasite load of infected THP-1 cells and delayed footpad swelling in parasite infected mice. Collectively, these results suggest that leishmania parasites might hijack the cGAS-STING-TBK1 signaling pathway to their own advantage and the TBK1 inhibitor amlexanox could be of interest as a candidate drug in treatment of cutaneous leishmaniasis.


Assuntos
Leishmania , Parasitos , Camundongos , Animais , DNA de Cinetoplasto , Leishmania/metabolismo , Parasitos/metabolismo , Parasitemia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , DNA/metabolismo , Cromogranina A , Proteínas Serina-Treonina Quinases/genética
2.
Sci Rep ; 12(1): 15139, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071119

RESUMO

Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Estresse Oxidativo
3.
J Immunol ; 205(10): 2707-2718, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33028617

RESUMO

Immunomodulatory commensal bacteria modify host immunity through delivery of regulatory microbial-derived products to host cells. Extracellular membrane vesicles (MVs) secreted from symbiont commensals represent one such transport mechanism. How MVs exert their anti-inflammatory effects or whether their tolerance-inducing potential can be used for therapeutic purposes remains poorly defined. In this study, we show that MVs isolated from the human lactic acid commensal bacteria Pediococcus pentosaceus suppressed Ag-specific humoral and cellular responses. MV treatment of bone marrow-derived macrophages and bone marrow progenitors promoted M2-like macrophage polarization and myeloid-derived suppressor cell differentiation, respectively, most likely in a TLR2-dependent manner. Consistent with their immunomodulatory activity, MV-differentiated cells upregulated expression of IL-10, arginase-1, and PD-L1 and suppressed the proliferation of activated T cells. MVs' anti-inflammatory effects were further tested in acute inflammation models in mice. In carbon tetrachloride-induced fibrosis and zymosan-induced peritonitis models, MVs ameliorated inflammation. In the dextran sodium sulfate-induced acute colitis model, systemic treatment with MVs prevented colon shortening and loss of crypt architecture. In an excisional wound healing model, i.p. MV administration accelerated wound closure through recruitment of PD-L1-expressing myeloid cells to the wound site. Collectively, these results indicate that P. pentosaceus-derived MVs hold promise as therapeutic agents in management/treatment of inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Micropartículas Derivadas de Células/imunologia , Microbioma Gastrointestinal/imunologia , Macrófagos/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Membrana Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Ligilactobacillus salivarius/citologia , Ligilactobacillus salivarius/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Células Supressoras Mieloides/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Pediococcus pentosaceus/citologia , Pediococcus pentosaceus/imunologia , Linfócitos T Reguladores/imunologia
4.
Nat Commun ; 11(1): 2416, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415208

RESUMO

Chemoresistance is a major obstacle in triple negative breast cancer (TNBC), the most aggressive breast cancer subtype. Here we identify hypoxia-induced ECM re-modeler, lysyl oxidase (LOX) as a key inducer of chemoresistance by developing chemoresistant TNBC tumors in vivo and characterizing their transcriptomes by RNA-sequencing. Inhibiting LOX reduces collagen cross-linking and fibronectin assembly, increases drug penetration, and downregulates ITGA5/FN1 expression, resulting in inhibition of FAK/Src signaling, induction of apoptosis and re-sensitization to chemotherapy. Similarly, inhibiting FAK/Src results in chemosensitization. These effects are observed in 3D-cultured cell lines, tumor organoids, chemoresistant xenografts, syngeneic tumors and PDX models. Re-expressing the hypoxia-repressed miR-142-3p, which targets HIF1A, LOX and ITGA5, causes further suppression of the HIF-1α/LOX/ITGA5/FN1 axis. Notably, higher LOX, ITGA5, or FN1, or lower miR-142-3p levels are associated with shorter survival in chemotherapy-treated TNBC patients. These results provide strong pre-clinical rationale for developing and testing LOX inhibitors to overcome chemoresistance in TNBC patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Colágeno/química , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Integrinas/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Transplante de Neoplasias , RNA-Seq , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA