RESUMO
OBJECTIVE: Dietary glycemic index (GI) and glycemic load (GL) are associated with cardiometabolic health in children and adolescents, with potential distinct effects in people with increased BMI. DNA methylation (DNAm) may mediate these effects. Thus, we conducted meta-analyses of epigenome-wide association studies (EWAS) between dietary GI and GL and blood DNAm of children and adolescents. RESEARCH DESIGN AND METHODS: We calculated dietary GI and GL and performed EWAS in children and adolescents (age range: 4.5-17 years) from six cohorts (N = 1,187). We performed stratified analyses of participants with normal weight (n = 801) or overweight or obesity (n = 386). We performed look-ups for the identified cytosine-phosphate-guanine (CpG) sites (false discovery rate [FDR] <0.05) with tissue-specific gene expression of 832 blood and 223 subcutaneous adipose tissue samples from children and adolescents. RESULTS: Dietary GL was positively associated with DNAm of cg20274553 (FDR <0.05), annotated to WDR27. Several CpGs were identified in the normal-weight (GI: 85; GL: 17) and overweight or obese (GI: 136; GL: 298; FDR <0.05) strata, and none overlapped between strata. In participants with overweight or obesity, identified CpGs were related to RNA expression of genes associated with impaired metabolism (e.g., FRAT1, CSF3). CONCLUSIONS: We identified 537 associations between dietary GI and GL and blood DNAm, mainly in children and adolescents with overweight or obesity. High-GI and/or -GL diets may influence epigenetic gene regulation and thereby promote metabolic derangements in young people with increased BMI.
Assuntos
Índice Glicêmico , Carga Glicêmica , Humanos , Criança , Adolescente , Pré-Escolar , Índice Glicêmico/fisiologia , Sobrepeso , Metilação de DNA/genética , Epigenoma , Dieta , Obesidade , Proteínas Proto-Oncogênicas , Proteínas Adaptadoras de Transdução de SinalRESUMO
Recent studies have shown that maternal supplementation with folate and long-chain polyunsaturated fatty acids (LC-PUFAs) during pregnancy may affect children's brain development. We aimed at examining the potential long-term effect of maternal supplementation with fish oil (FO) and/or 5-methyl-tetrahydrofolate (5-MTHF) on the brain functionality of offspring at the age of 9.5-10 years. The current study was conducted as a follow-up of the Spanish participants belonging to the Nutraceuticals for a Healthier Life (NUHEAL) project; 57 children were divided into groups according to mother's supplementation and assessed through functional magnetic resonance imaging (fMRI) scanning and neurodevelopment testing. Independent component analysis and double regression methods were implemented to investigate plausible associations. Children born to mothers supplemented with FO (FO and FO + 5-MTHF groups, n = 33) showed weaker functional connectivity in the default mode (DM) (angular gyrus), the sensorimotor (SM) (motor and somatosensory cortices) and the fronto-parietal (FP) (angular gyrus) networks compared to the No-FO group (placebo and 5-MTHF groups, n = 24) (PFWE < 0.05). Furthermore, no differences were found regarding the neuropsychological tests, except for a trend of better results in an object recall (memory) test. Considering the No-FO group, the aforementioned networks were associated negatively with attention and speed-processing functions. Mother's FO supplementation during pregnancy seems to be able to shape resting-state network functioning in their children at school age and appears to produce long-term effects on children´s cognitive processing.