Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 215: 109072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39186851

RESUMO

Cadmium (Cd) toxicity induces significant disruptions in growth and development, plants have developed strategies to alleviate metal toxicity promoting establishment even during herbivores infestation. The study demonstrates that W. trilobata maintains growth and development under the combined stress of Cd exposure and herbivore invasion by Spodoptera litura, in contrast to W. chinensis. Cd toxicity markedly reduce shoot elongation and total fresh biomass, and a significant decrease in the dry weight of the shoot biomass and leaf count by 19%, 18%, 16%, and 19% in W. trilobata compared to controls. An even more pronounced decrease of 35%, 43%, 45% and 43% was found in W. chinensis. Compared to W. chinensis, W. trilobata showed a higher increase in phytohormone production including abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid (IAA) and methyl jasmonic acid (JA-me) under both Cd and herbivory stress as compared with respective controls. In addition, leaf ultra-structure also showed the highest damage to cell membranous structures by Cd-toxicity in W. chinensis. Furthermore, RNA-seq analysis revealed numerous genes viz., EMSY, MCCA, TIRI, BED-type, ABA, JAZ, CAB-6, CPSI, LHCII, CAX, HNM, ABC-Cd-trans and GBLP being differentially expressed between Cd-stress and herbivory groups in both W. trilobata and W. chinensis, with a particular emphasis on genes associated with metal transport and carbohydrate metabolism. Analyses employing the Gene Ontology (GO) system, the Clusters of Orthologous Groups (COG) categorization, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlight the functional and evolutionary relationships among the genes of the Phenylpropanoid and Flavonoid biosynthesis pathways and brassinosterod metabolism, associated with plant growth and development under Cd-toxicity and herbivory. W. trilobata opposite of W. chinensis, significantly improve plant growth and mitigates Cd toxicity through modulation of metabolic processes, and regulation of responsible genes, to sustain its growth under Cd and herbivory stress, which can be used in stress improvement in plants for sustainable ecosystem biodiversity and food security.


Assuntos
Cádmio , Herbivoria , Reguladores de Crescimento de Plantas , Wedelia , Cádmio/toxicidade , Cádmio/metabolismo , Herbivoria/efeitos dos fármacos , Animais , Wedelia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Spodoptera/fisiologia , Spodoptera/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo
2.
BMC Plant Biol ; 24(1): 428, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773358

RESUMO

BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.


Assuntos
Acacia , Colchicina , Sementes , Colchicina/farmacologia , Acacia/efeitos dos fármacos , Acacia/fisiologia , Acacia/crescimento & desenvolvimento , Acacia/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
3.
Biochem Genet ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411942

RESUMO

WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.

4.
J Hazard Mater ; 464: 132955, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976857

RESUMO

The NRAMPs (natural resistance-associated macrophage proteins) are major transporters for the absorption and transport of metals like Pb, Zn, Mn, Fe, and Cd in plants. While NRAMP gene family members have been extensively studied as metal transporters in model and other plants, little information has been reported on their role in Triticum aestivum, particularly in response to Cd stress. Current study reported 13 NRAMP candidates in the genome of T. aestivum. Phylogenetic analysis divided these into three clades. Motif and gene structure study showed that members in the same clades shared the same location and pattern, which further supported the phylogenetic analysis. The analysis of cis-acting elements in promoter sequences of NRAMP genes in wheat identified stress-responsive transcription factor binding sites. Multiple sequence alignment identified the conservation of important residues. Based on RNA-seq and qRT-PCR analysis, Cd stress-responsive variations of TaNRAMP gene expression were reported. This study provides comprehensive data to understand the TaNRAMP gene family, its features, and its expression, which will be a helpful framework for functional research.


Assuntos
Cádmio , Triticum , Cádmio/toxicidade , Cádmio/metabolismo , Triticum/genética , Triticum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metais/metabolismo , Proteínas de Membrana Transportadoras/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
5.
BMC Plant Biol ; 23(1): 576, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978421

RESUMO

BACKGROUND: Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS: HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION: The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).


Assuntos
Antioxidantes , Eucalyptus , Antioxidantes/análise , Peróxido de Hidrogênio , Ácido Ascórbico , Extratos Vegetais/análise , Frutas/microbiologia
6.
Front Genet ; 14: 1252020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799143

RESUMO

Arachis hypogaea (peanut) is a leading oil and protein-providing crop with a major food source in many countries. It is mostly grown in tropical regions and is largely affected by abiotic and biotic stresses. Cysteine-rich receptor-like kinases (CRKs) is a family of transmembrane proteins that play important roles in regulating stress-signaling and defense mechanisms, enabling plants to tolerate stress conditions. However, almost no information is available regarding this gene family in Arachis hypogaea and its progenitors. This study conducts a pangenome-wide investigation of A. hypogaea and its two progenitors, A. duranensis and A. ipaensis CRK genes (AhCRKs, AdCRKs, and AiCRKs). The gene structure, conserved motif patterns, phylogenetic history, chromosomal distribution, and duplication were studied in detail, showing the intraspecies structural conservation and evolutionary patterns. Promoter cis-elements, protein-protein interactions, GO enrichment, and miRNA targets were also predicted, showing their potential functional conservation. Their expression in salt and drought stresses was also comprehensively studied. The CRKs identified were divided into three groups, phylogenetically. The expansion of this gene family in peanuts was caused by both types of duplication: tandem and segmental. Furthermore, positive as well as negative selection pressure directed the duplication process. The peanut CRK genes were also enriched in hormones, light, development, and stress-related elements. MicroRNA (miRNA) also targeted the AhCRK genes, which suggests the regulatory association of miRNAs in the expression of these genes. Transcriptome datasets showed that AhCRKs have varying expression levels under different abiotic stress conditions. Furthermore, the multi-stress responsiveness of the AhCRK genes was evaluated using a machine learning-based method, Random Forest (RF) classifier. The 3D structures of AhCRKs were also predicted. Our study can be utilized in developing a detailed understanding of the stress regulatory mechanisms of the CRK gene family in peanuts and its further studies to improve the genetic makeup of peanuts to thrive better under stress conditions.

7.
PeerJ ; 11: e15229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090115

RESUMO

Background: Wheat is a staple cereal food around the globe. It provides a significant source of proteins, carbohydrates, and other micronutrients to humans. When grown on cadmium (Cd) contaminated soils, the uptake of trace elements e.g., iron (Fe) and zinc (Zn) has also been affected drastically that in turn affected the wheat grain. Methods: In this study, wheat accessions were used to investigate the impact of soil application of Zn (5 mg/kg, 20 mg/kg) and Cd (0 mg/kg, 10 mg/kg) on accumulation of these elements in wheat grains. A total of 45 Fe, Zn, and Cd transporter-related genes were used to design 101 gene-specific SSR (simple sequence repeat) markers. Results: In response to Cd stress, application of 20 mg/Kg Zn improved Fe (64.6 ug/g) and Zn (48.3 ug/g) accumulation in wheat grains as well as agronomic traits. Marker trait association revealed that SSR markers based on NAM-B1 gene (PR01 and PR02) were associated with Zn accumulation. Similarly, SSR markers based on TaVTL5-2B_5 (PR19 PR20), TaVTL5-2B_2 (PR25, PR26), TaVTL5-2D_3 (PR30), TaVTL2-2A (PR31), TaVTL1-6A (PR32), and TaVTL2-2D_1 (PR37) were significantly associated with Fe accumulation, while HMA3-5B1 (PR62) and TaNRAMP3-7D (PR89) were linked to Cd accumulation in grains. The highly associated markers may be used in marker-assisted selection of suitable wheat genotypes for breeding bio-fortified varieties with low Cd accumulation.


Assuntos
Cádmio , Zinco , Humanos , Zinco/metabolismo , Cádmio/metabolismo , Ferro/metabolismo , Triticum/genética , Melhoramento Vegetal , Grão Comestível/metabolismo , Repetições de Microssatélites/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-36622618

RESUMO

Nanotechnology uses biological and non-biological materials to create new systems at the nanoscale level. In recent years, the use of silver nanomaterials has attracted worldwide attention thanks to their wide range of applications as catalysts in several environmental processes including the degradation of organic pollutants and medicinal biotechnology. This study reports the synthesis of silver nanoparticles (AgNPs) through different methods including the biogenic methods based on leaf extract of Conocarpus erectus and a bacterial strain Pseudomonas sp. as well as chemically based abiotic method and comparison of their dye degradation potential. The synthesis of AgNPs in all samples was confirmed by UV-visible spectroscopy peaks at 418-420 nm. Using scanning electrom microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray differaction (XRD), and X-ray photoelectron spectroscopy (XPS), the biologically synthesized AgNPs were characterized as spherical shape of material with capping proteins that were involved in the stabilization of nanoparticles (NPs). The biologically synthesized AgNPs showed higher degradation (< 90%) of dyes as compared to chemically synthesized NPs. A prominent reduction of total dissolved solids (TDS), electrical conductivity (EC), pH, and chemical oxygen demand (COD) in textile wastewater spiked with reactive black 5 and reactive red 120 was observed by biologically synthesized AgNPs. AgNPs synthesized by Conocarpus erectus and Pseudomonas sp. also showed better characteristic anticancer and antidiabetic activities as compared to chemically synthesized ones. The results of this study suggested that C. erectus and Pseudomonas sp. based AgNPs can be exploited as an eco-friendly and cost-efficient materials to treat the wastewater and potential other polluted environments as well as to serve the medicinal field.

9.
Pharmaceutics ; 14(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145718

RESUMO

Epithelial ovarian cancer (EOC) is one of the deadliest reproductive tract malignancies that form on the external tissue covering of an ovary. Cassia fistula is popular for its anti-inflammatory and anticarcinogenic properties in conventional medications. Nevertheless, its molecular mechanisms are still unclear. The current study evaluated the potential of C. fistula for the treatment of EOC using network pharmacology approach integrated with molecular docking. Eight active constituents of C. fistula were obtained from two independent databases and the literature, and their targets were retrieved from the SwissTargetPrediction. In total, 1077 EOC associated genes were retrieved from DisGeNET and GeneCardsSuite databases, and 800 potential targets of eight active constituents of C. fistula were mapped to the 1077 EOC targets and intersected targets from two databases. Ultimately, 98 potential targets were found from C. fistula for EOC. Finally, the protein-protein interaction network (PPI) topological interpretation revealed AKT1, CTNNB1, ESR1, and CASP3 as key targets. This is the first time four genes have been found against EOC from C. fistula. The major enriched pathways of these candidate genes were established by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) investigations. To confirm the network pharmacology findings, the molecular docking approach demonstrated that active molecules have higher affinity for binding to putative targets for EOC suppression. More pharmacological and clinical research is required for the development of a drug to treat EOC.

10.
Sci Rep ; 11(1): 2266, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500544

RESUMO

WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Genômica , Mangifera/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico , Repetições WD40/genética , Motivos de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Marcadores Genéticos , Mangifera/crescimento & desenvolvimento , Manitol/farmacologia , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Mapas de Interação de Proteínas , Estresse Salino/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo
11.
Sci Rep ; 10(1): 20017, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208758

RESUMO

Polyphenols based bioactive compounds from vegetables and fruits are known for impressive antioxidant activity. Ingestion of these antioxidants may promote human health against cardiovascular diseases and cancer. Mango is a popular tropical fruit with special taste, high nutritional value and health-enhancing metabolites. The aim was to investigate the diversity of phytochemicals between two mango cultivars of china at three stages of fruit maturity. We used ESI-QTRAP-MS/MS approach to characterize comprehensively the metabolome of two mango cultivars named Hongguifei (HGF) and Tainong (TN). HPLC was used to quantify selected catechin based phenolic compounds. Moreover, real-time qPCR was used to study the expression profiles of two key genes (ANR and LAR) involved in proanthocyanidin biosynthesis from catechins and derivatives. A total of 651 metabolites were identified, which include at least 257 phenolic compounds. Higher number of metabolites were differentially modulated in peel as compared to pulp. Overall, the relative quantities of amino acids, carbohydrates, organic acids, and other metabolites were increased in the pulp of TN cultivar. While the contents of phenolic compounds were relatively higher in HGF cultivar. Moreover, HPLC based quantification of catechin and derivatives exhibited cultivar specific variations. The ANR and LAR genes exhibited an opposite expression profile in both cultivars. Current study is the first report of numerous metabolites including catechin-based derivatives in mango fruit. These findings open novel possibilities for the use of mango as a source of bioactive compounds.


Assuntos
Frutas/metabolismo , Mangifera/metabolismo , Metaboloma , Compostos Fitoquímicos/análise , Extratos Vegetais/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , China , Frutas/química , Mangifera/química , Mangifera/classificação , Valor Nutritivo , Extratos Vegetais/análise , Extratos Vegetais/química
12.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150834

RESUMO

Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Bactérias/patogenicidade , Fungos/patogenicidade , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Tylenchoidea/patogenicidade , Animais , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosilfosfatidilinositóis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia
13.
Arch Microbiol ; 202(5): 967-981, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32052094

RESUMO

L-asparaginase (E.C.3.5.1.1) is an important enzyme that has been purified and characterized for over decades to study and evaluate its anti-carcinogenic activity against different lymphoproliferative disorders such as acute lymphoblastic leukemia (ALL) and Hodgkin's lymphoma. The ability of the enzyme to convert L-asparagine into aspartic acid and ammonia is the reason behind its anti-cancerous activity. Apart from its medicinal uses, it is widely used in food industry to tackle acrylamide, a probable human carcinogen and, production in carbohydrate-rich foods cooked at high temperatures. There are variety of organisms including microorganisms such as bacteria, fungi, algae, and plants that produce L-asparaginase. The enzyme obtained from different microbial and plant sources have different physiochemical properties and kinetic parameters. L-asparaginases have an optimum pH range between 6 and 10 and an optimum temperature between 37 and 85 °C. This article has reviewed the lowest molecular mass for L-asparaginase in Yersinia pseudotuberculosis Q66CJ2 which is 36.27 kDa, while the highest for Pseudomonas otitidis which has a molecular mass of 205 ± 3 kDa. This review is an attempt to summarize most of the available sources, their phylogenetic relationships, purification methods, data regarding different physiochemical and kinetic properties of L-asparaginase.


Assuntos
Asparaginase/química , Bactérias/enzimologia , Fungos/enzimologia , Doença de Hodgkin/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Amônia/metabolismo , Asparaginase/genética , Asparaginase/isolamento & purificação , Asparagina/química , Ácido Aspártico/metabolismo , Humanos , Filogenia , Plantas
14.
Front Plant Sci ; 8: 1699, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046680

RESUMO

Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.

15.
Front Plant Sci ; 8: 750, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536595

RESUMO

Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

16.
Environ Sci Pollut Res Int ; 23(17): 16904-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27272922

RESUMO

Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.


Assuntos
Biodegradação Ambiental , Fungos/metabolismo , Praguicidas , Praguicidas/análise , Praguicidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA