Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(3): e3002567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470934

RESUMO

PEX5, the peroxisomal protein shuttling receptor, binds newly synthesized proteins in the cytosol and transports them to the organelle. During its stay at the peroxisomal protein translocon, PEX5 is monoubiquitinated at its cysteine 11 residue, a mandatory modification for its subsequent ATP-dependent extraction back into the cytosol. The reason why a cysteine and not a lysine residue is the ubiquitin acceptor is unknown. Using an established rat liver-based cell-free in vitro system, we found that, in contrast to wild-type PEX5, a PEX5 protein possessing a lysine at position 11 is polyubiquitinated at the peroxisomal membrane, a modification that negatively interferes with the extraction process. Wild-type PEX5 cannot retain a polyubiquitin chain because ubiquitination at cysteine 11 is a reversible reaction, with the E2-mediated deubiquitination step presenting faster kinetics than PEX5 polyubiquitination. We propose that the reversible nonconventional ubiquitination of PEX5 ensures that neither the peroxisomal protein translocon becomes obstructed with polyubiquitinated PEX5 nor is PEX5 targeted for proteasomal degradation.


Assuntos
Cisteína , Lisina , Animais , Ratos , Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Transporte Proteico , Ubiquitinação
2.
Nat Commun ; 14(1): 7431, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973928

RESUMO

Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.


Assuntos
Toxinas Bacterianas , NF-kappa B , NF-kappa B/metabolismo , Toxinas Bacterianas/metabolismo , Endocitose , Endossomos/metabolismo , Peptídeos/metabolismo , Transporte Proteico
3.
Redox Biol ; 67: 102917, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804696

RESUMO

Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.


Assuntos
Glutationa , Peroxissomos , Peroxissomos/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Oxirredução , Homeostase
4.
Redox Biol ; 63: 102764, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257275

RESUMO

Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.


Assuntos
Peroxissomos , Proteína Dissulfeto Redutase (Glutationa) , Ratos , Animais , Dissulfeto de Glutationa/metabolismo , Peroxissomos/metabolismo , Cisteína/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/análise , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Peróxido de Hidrogênio/metabolismo , Glutationa/metabolismo , Oxirredução , Proteínas/metabolismo , Mamíferos/metabolismo , Homeostase
5.
J Mol Biol ; 435(2): 167896, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36442669

RESUMO

The AAA ATPases PEX1•PEX6 extract PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane so that a new protein transport cycle can start. Extraction requires ubiquitination of PEX5 at residue 11 and involves a threading mechanism, but how exactly this occurs is unclear. We used a cell-free in vitro system and a variety of engineered PEX5 and ubiquitin molecules to challenge the extraction machinery. We show that PEX5 modified with a single ubiquitin is a substrate for extraction and extend previous findings proposing that neither the N- nor the C-terminus of PEX5 are required for extraction. Chimeric PEX5 molecules possessing a branched polypeptide structure at their C-terminal domains can still be extracted from the peroxisomal membrane thus suggesting that the extraction machinery can thread more than one polypeptide chain simultaneously. Importantly, we found that the PEX5-linked monoubiquitin is unfolded at a pre-extraction stage and, accordingly, an intra-molecularly cross-linked ubiquitin blocked extraction when conjugated to residue 11 of PEX5. Collectively, our data suggest that the PEX5-linked monoubiquitin is the extraction initiator and that the complete ubiquitin-PEX5 conjugate is threaded by PEX1•PEX6.


Assuntos
Proteínas de Membrana , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos , Ubiquitina , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico , Ubiquitina/metabolismo , Ubiquitinação , Humanos , Sistema Livre de Células
6.
FEBS J ; 286(1): 205-222, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414318

RESUMO

PEX13 and PEX14 are two core components of the so-called peroxisomal docking/translocation module, the transmembrane hydrophilic channel through which newly synthesized peroxisomal proteins are translocated into the organelle matrix. The two proteins interact with each other and with PEX5, the peroxisomal matrix protein shuttling receptor, through relatively well characterized domains. However, the topologies of these membrane proteins are still poorly defined. Here, we subjected proteoliposomes containing PEX13 or PEX14 and purified rat liver peroxisomes to protease-protection assays and analyzed the protected protein fragments by mass spectrometry, Edman degradation and western blotting using antibodies directed to specific domains of the proteins. Our results indicate that PEX14 is a bona fide intrinsic membrane protein with a Nin -Cout topology, and that PEX13 adopts a Nout -Cin topology, thus exposing its carboxy-terminal Src homology 3 [SH3] domain into the organelle matrix. These results reconcile several enigmatic findings previously reported on PEX13 and PEX14 and provide new insights into the organization of the peroxisomal protein import machinery. ENZYMES: Trypsin, EC3.4.21.4; Proteinase K, EC3.4.21.64; Tobacco etch virus protease, EC3.4.22.44.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Animais , Lipossomos/metabolismo , Masculino , Proteínas de Membrana/genética , Transporte Proteico , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Repressoras/genética
7.
J Exp Bot ; 69(19): 4633-4649, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30053161

RESUMO

Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidases/genética , Ligases/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ligases/metabolismo , Filogenia , Alinhamento de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
8.
J Biol Chem ; 293(29): 11553-11563, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29884772

RESUMO

PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Mapas de Interação de Proteínas , Humanos , Modelos Moleculares , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Peroxissomos/metabolismo , Transporte Proteico , Desdobramento de Proteína , Ubiquitina/metabolismo , Ubiquitinação
9.
J Biol Chem ; 292(37): 15287-15300, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765278

RESUMO

A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5-cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1-197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1-125)) still interacted correctly with the DTM; however, this species was largely accessible to exogenously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1-125)-DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138-639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5-DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Transporte Biológico , Endopeptidase K/metabolismo , Deleção de Genes , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Mutação , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Solubilidade
10.
Autophagy ; 11(8): 1326-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086376

RESUMO

Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells. In this study, we show that PEX5 proteins fused to a bulky C-terminal tag trigger peroxisome degradation in SV40 large T antigen-transformed mouse embryonic fibroblasts. In addition, we provide evidence that this process is autophagy-dependent and requires monoubiquitination of the N-terminal cysteine residue that marks PEX5 for recycling. As our findings also demonstrate that the addition of a bulky tag to the C terminus of PEX5 does not interfere with PEX5 monoubiquitination but strongly inhibits its export from the peroxisomal membrane, we hypothesize that such a tag mimics a cargo protein that cannot be released from PEX5, thus keeping monoubiquitinated PEX5 at the membrane for a sufficiently long time to be recognized by the autophagic machinery. This in turn suggests that monoubiquitination of the N-terminal cysteine of peroxisome-associated PEX5 not only functions to recycle the peroxin back to the cytosol, but also serves as a quality control mechanism to eliminate peroxisomes with a defective protein import machinery.


Assuntos
Antígenos Transformantes de Poliomavirus/química , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Ubiquitinação , Animais , Autofagia , Cisteína/química , Citosol/metabolismo , DNA/análise , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Camundongos , Receptor 1 de Sinal de Orientação para Peroxissomos , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
Infect Immun ; 82(12): 5270-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287919

RESUMO

AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Toxinas Bacterianas/metabolismo , NF-kappa B/metabolismo , Photobacterium/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Citosol/química , Endocitose , Endossomos/química , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteólise
12.
Traffic ; 15(1): 94-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24118911

RESUMO

Peroxisome maintenance depends on the import of nuclear-encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C-terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5. After docking at the peroxisomal membrane and release of the cargo into the organelle matrix, PEX5 is recycled to the cytosol through a process requiring monoubiquitination of an N-terminal, cytosolically exposed cysteine residue (Cys11 in the human protein). At present, the reason why a cysteine, and not a lysine residue, is the target of ubiquitination remains unclear. Here, we provide evidence that PTS1 protein import into human fibroblasts is a redox-sensitive process. We also demonstrate that Cys11 in human PEX5 functions as a redox switch that regulates PEX5 activity in response to intracellular oxidative stress. Finally, we show that exposure of human PEX5 to oxidized glutathione results in a ubiquitination-deficient PEX5 molecule, and that substitution of Cys11 by a lysine can counteract this effect. In summary, these findings reveal that the activity of PEX5, and hence PTS1 import, is controlled by the redox state of the cytosol. The potential physiological implications of these findings are discussed.


Assuntos
Estresse Oxidativo , Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Citosol/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução , Receptor 1 de Sinal de Orientação para Peroxissomos , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinação
13.
Biochimie ; 98: 29-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23954799

RESUMO

PEX5 is the shuttling receptor for newly synthesized peroxisomal matrix proteins. Alone, or with the help of an adaptor protein, this receptor binds peroxisomal matrix proteins in the cytosol and transports them to the peroxisomal membrane docking/translocation module (DTM). The interaction between cargo-loaded PEX5 and the DTM ultimately results in its insertion into the DTM with the concomitant translocation of the cargo protein across the organelle membrane. PEX5 is not consumed in this event; rather it is dislocated back into the cytosol so that it can promote additional rounds of protein transportation. Remarkably, the data collected in recent years indicate that dislocation is preceded by monoubiquitination of PEX5 at a conserved cysteine residue. This mandatory modification is not the only type of ubiquitination occurring at the DTM. Indeed, several findings suggest that defective receptors jamming the DTM are polyubiquitinated and targeted to the proteasome for degradation.


Assuntos
Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Ubiquitina/metabolismo , Animais , Proteínas de Arabidopsis/fisiologia , Humanos , Receptor 1 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/fisiologia , Ubiquitinação
14.
J Biol Chem ; 288(40): 29151-9, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23963456

RESUMO

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the organelle by PEX5, the peroxisomal shuttling receptor. The pathway followed by PEX5 during this process is known with reasonable detail. After recognizing cargo proteins in the cytosol, the receptor interacts with the peroxisomal docking/translocation machinery, where it gets inserted; PEX5 is then monoubiquitinated, extracted back to the cytosol and, finally, deubiquitinated. However, despite this information, the exact step of this pathway where cargo proteins are translocated across the organelle membrane is still ill-defined. In this work, we used an in vitro import system to characterize the translocation mechanism of a matrix protein possessing a type 1 targeting signal. Our results suggest that translocation of proteins across the organelle membrane occurs downstream of a reversible docking step and upstream of the first cytosolic ATP-dependent step (i.e. before ubiquitination of PEX5), concomitantly with the insertion of the receptor into the docking/translocation machinery.


Assuntos
Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Humanos , Camundongos , Modelos Biológicos , Receptor 1 de Sinal de Orientação para Peroxissomos , Sinais Direcionadores de Proteínas , Transporte Proteico , Frações Subcelulares/metabolismo , Temperatura
15.
PLoS Pathog ; 9(2): e1003128, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468618

RESUMO

AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys(39)-Glu(40) peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Toxinas Bacterianas/metabolismo , Metaloproteases/metabolismo , Photobacterium/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Virulência/metabolismo , Animais , Bass , Doenças dos Peixes/metabolismo , Interações Hospedeiro-Patógeno , Leucócitos/metabolismo , Leucócitos/patologia , Proteínas Recombinantes
16.
Biochim Biophys Acta ; 1823(10): 1958-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22867988

RESUMO

Covalent conjugation of the small ubiquitin-like modifier (SUMO) to proteins is a highly dynamic and reversible process. Cells maintain a fine-tuned balance between SUMO conjugation and deconjugation. In response to stress stimuli such as heat shock, this balance is altered resulting in a dramatic increase in the levels of SUMO conjugates. Whether this reflects an activation of the conjugation cascade, a decrease in the activity of SUMO-specific proteases (SENPs), or both, remains unknown. Here, we show that from the five human SENPs detected in HeLa cells (SENP1/2/3/6/7) the activities of all but one (SENP6) were largely diminished after 30min of heat shock. The decreased activity is not due to changes in their steady-state levels. Rather, in vitro experiments suggest that these SENPs are intrinsically heat-sensitive, a property most likely emerging from their catalytic domains. Heat shock inactivation seems to be a specific property of SENPs because numerous members of the related deubiquitinase family of cysteine proteases are not affected by this stress condition. Overall, our results suggest that SENPs are particularly sensitive to heat shock, a property that may be important for the adaptation of cells to this stress condition.


Assuntos
Cisteína Endopeptidases/metabolismo , Resposta ao Choque Térmico , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Domínio Catalítico , Cisteína Endopeptidases/química , Ativação Enzimática , Células HeLa , Humanos , Desdobramento de Proteína , Coloração e Rotulagem , Especificidade por Substrato , Temperatura
17.
J Biol Chem ; 287(16): 12815-27, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371489

RESUMO

Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates.


Assuntos
Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Animais , Citosol/enzimologia , Ativação Enzimática/fisiologia , Ésteres/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Hidrólise , Fígado/enzimologia , Masculino , Receptor 1 de Sinal de Orientação para Peroxissomos , Coelhos , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Especificidade por Substrato/fisiologia , Ubiquitina Tiolesterase/isolamento & purificação
18.
Biochim Biophys Acta ; 1793(11): 1669-75, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19715730

RESUMO

According to current models, most newly synthesized peroxisomal intrinsic membrane proteins are recognized in the cytosol and targeted to the peroxisomal membrane by PEX19. At the organelle membrane the PEX19-cargo protein complex interacts with PEX3, a protein believed to possess only one transmembrane domain and exposing the majority of its polypeptide chain into the cytosol. In agreement with this topological model, a recombinant protein comprising the cytosolic domain of PEX3 can be purified in a soluble and monomeric form in the absence of detergents or other solubilizing agents. Here, we show that this recombinant protein actually precipitates when incubated with mild detergents, suggesting that this domain of PEX3 interacts with amphipathic molecules. Following this observation, we tested this recombinant protein in lipid-binding assays and found that it interacts strongly with liposomes inducing their flocculation or even partial solubilization. The implications of these findings are discussed.


Assuntos
Lipoproteínas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Peroxissomos/metabolismo , Transporte Biológico/fisiologia , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peroxinas , Peroxissomos/química , Peroxissomos/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Biol Chem ; 284(40): 27243-51, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19632994

RESUMO

Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5, the peroxisomal cycling receptor. Over the last few years, valuable data on the mechanism of this process have been obtained using a PEX5-centered in vitro system. The data gathered until now suggest that cytosolic PEX5.cargo protein complexes dock at the peroxisomal docking/translocation machinery, where PEX5 becomes subsequently inserted in an ATP-independent manner. This PEX5 species is then monoubiquitinated at a conserved cysteine residue, a mandatory modification for the next step of the pathway, the ATP-dependent dislocation of the ubiquitin-PEX5 conjugate back into the cytosol. Finally, the ubiquitin moiety is removed, yielding free PEX5. Despite its usefulness, there are many unsolved mechanistic aspects that cannot be addressed with this in vitro system and that call for a cargo protein-centered perspective instead. Here we describe a robust peroxisomal in vitro import system that provides this perspective. The data obtained with it suggest that translocation of a cargo protein across the peroxisomal membrane, including its release into the organelle matrix, occurs prior to PEX5 ubiquitination.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Humanos , Marcação por Isótopo , Fígado , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/metabolismo , Transporte Proteico , Ratos , Radioisótopos de Enxofre/metabolismo
20.
J Biol Chem ; 284(16): 10504-13, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19208625

RESUMO

Pex5p, the peroxisomal protein cycling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During its transient passage through the membrane, Pex5p is monoubiquitinated at a conserved cysteine residue, a requisite for its subsequent ATP-dependent export back into the cytosol. Here we describe the properties of the soluble and membrane-bound monoubiquitinated Pex5p species (Ub-Pex5p). Our data suggest that 1) Ub-Pex5p is deubiquitinated by a combination of context-dependent enzymatic and nonenzymatic mechanisms; 2) soluble Ub-Pex5p retains the capacity to interact with the peroxisomal import machinery in a cargo-dependent manner; and 3) substitution of the conserved cysteine residue of Pex5p by a lysine results in a quite functional protein both in vitro and in vivo. Additionally, we show that MG132, a proteasome inhibitor, blocks the import of a peroxisomal reporter protein in vivo.


Assuntos
Ésteres/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Compostos de Sulfidrila/metabolismo , Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ésteres/química , Humanos , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Compostos de Sulfidrila/química , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA