Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Artif Cells Nanomed Biotechnol ; 49(1): 717-727, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34907839

RESUMO

Nano-hydroxyapatite is being investigated as vital components of implants and dental and tissue engineering devices. It is found as a bone replacement due to its non-toxicity and cytocompatibility with dental tissues and bone. The reality that nanocrystalline hydroxyapatite can be made of porous granules and scaffolds. Additionally, it has a massive loading potential indicating its use as a transporter for drugs or a regulated drug release mechanism in pharmaceutical research. This review aims to present existing nano-hydroxyapatite research developments as a drug carrier employed in bone tissue disorders locally and deliver poorly soluble drugs with reduced bioavailability. We have discussed the nano-hydroxyapatite role in the delivery of drugs (i.e. anti-resorptive, anti-cancer, and antibiotics), proteins, genetic material, and radionuclides.


Assuntos
Durapatita , Alicerces Teciduais , Portadores de Fármacos/química , Durapatita/química , Porosidade , Engenharia Tecidual , Alicerces Teciduais/química
3.
Int J Nanomedicine ; 12: 1555-1563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280325

RESUMO

Gold nanoparticles (GNPs) with dimension in the range of 1-100 nm have a prominent role in a number of biomedical applications like imaging, drug delivery, and cancer therapy owing to their unique optical features and biocompatibility. In this work, we report a novel technique for the synthesis of two types of GNPs namely porous gold nanoparticles (PGNPs) and solid gold nanoparticles (SGNPs). PGNPs of size 35 nm were fabricated by reduction of gold (III) solution with lecithin followed by addition of L-ascorbic acid and tri-sodium citrate, whereas SGNPs with a dimension of 28 nm were prepared by reflux method using lecithin as a single reducing agent. Comparative studies using PGNPs (λmax 560 nm) and SGNPs (λmax 548 nm) were conducted for evaluating their use as a contrast agent. These studies reveled that in direct computed tomography scan, PGNPs exhibited brighter contrast (45 HU) than SGNPs (26 HU). To investigate the effect of PGNPs and SGNPs on the liver and kidney profile, male rabbits were intravenously injected with an equal dose of 1 mg/kg weight of PGNPs and SGNPs. The effect on biochemical parameters was evaluated 72 hours after intravenous (IV) injection including liver function profile, renal (kidney) function biomarker, random blood glucose value, and cholesterol level. During one comparison of contrast in CT scan, PGNPs showed significantly enhanced contrast in whole-rabbit and organ CT scan as compared to SGNPs 6 hours after injection. Our findings suggested that the novel PGNPs enhance CT scan image with higher efficacy as compared to SGNPs. The results showed that IV administration of synthesized PGNPs increases the levels of aspartate aminotransferase (AST), alkaline phosphate (ALP), serum creatinine, and blood glucose, whereas that of SGNPs increases the levels of AST, ALP, and blood glucose.


Assuntos
Meios de Contraste/administração & dosagem , Ouro/química , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste/química , Ouro/administração & dosagem , Injeções Intravenosas , Rim/efeitos dos fármacos , Rim/metabolismo , Testes de Função Renal , Fígado/efeitos dos fármacos , Fígado/metabolismo , Testes de Função Hepática , Masculino , Nanopartículas Metálicas/administração & dosagem , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA