Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(53): 32113-32126, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35518144

RESUMO

Thin films of Co and Ni electroplated onto a copper electrode from acidic sulfate and Watts baths, respectively, were investigated. The use of an ionic liquid additive in the electrolyte is widespread for producing thin films by electrodeposition. In the present work, the influence of a new ionic liquid, namely, 1-methyl-3-((2-oxo-2-(2,4,5-trifluorophenyl)amino)ethyl)-1H-imidazol-3-ium iodide (Im-IL), in the electrodeposition of two metals was investigated using cathodic polarization (CP), cyclic voltammetry (CV), and anodic linear stripping voltammetry (ALSV) measurements and cathodic current efficiency (CCE%). The surface morphology of the Co- and Ni-coated samples was examined using Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and atomic force microscopy (AFM). The corrosion protection of the Co and Ni samples in a marine environment (3.5% NaCl solution) was studied by the potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results show that the addition of Im-IL inhibits Co2+ and Ni2+ deposition, which leads to more fine-grained deposits, especially at low Im-IL concentrations. The inhibition of Co2+ and Ni2+ reduction in the presence of Im-IL ions occurs via adsorption, which obeys the Langmuir adsorption isotherm. The CCE% is higher in the presence of Im-IL. SEM images show smoother deposits of Co and Ni in 1 × 10-5 M and 1 × 10-4 M Im-IL solution respectively. The results prove that Im-IL acts as an efficient additive for electroplating soft Co and Ni films.

2.
Biomed Phys Eng Express ; 6(3): 035011, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33438656

RESUMO

Bone injury, especially bone damages due to the removal of bone tumors, is one of the most important issues in the field of therapeutic research in tissue engineering applications. In this context, ceramic-based composites have attracted widespread attention since they have mechanical properties close to the natural bone, hence providing similar conditions for the extracellular matrix (ECM). Thus, in this study, hardystonite and diopside (HT-Di) scaffolds containing various diopside amounts from 5 to 25 wt% were prepared by the space holder method. The results revealed that the fabricated scaffolds contain 70%-75% porosity with a pore size of 300-500 µm and a compressive strength of about 0.54 to 1.71 MPa which is perfectly in the range of the compressive strength of the sponge bone. Noticeably, great apatite formation ability was observed in the scaffold with diopside, although the scaffold without diopside showed poor bioactivity. The MTT assay depicted that the inclusion of diopside into hardystonite scaffold resulted in dramatic enhancement in the MG-63 cell viability. Moreover, the scaffold with diopside offered greater cell attachment and spreading than the scaffold without diopside. Therefore, the synergistic effects of the scaffold with 12.5 wt% of diopside, including great mechanical characteristic, excellent bioactivity, and appealing biocompatibility enable it to be an appealing choice for bone tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Nanocompostos/química , Silicatos/química , Ácido Silícico/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Substitutos Ósseos , Osso e Ossos/patologia , Linhagem Celular Tumoral , Cerâmica , Força Compressiva , Durapatita/farmacologia , Matriz Extracelular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Transição de Fase , Porosidade , Pós , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Alicerces Teciduais/química , Difração de Raios X
3.
Daru ; 27(1): 9-20, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30554368

RESUMO

Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.


Assuntos
Curcumina/química , Polietilenoglicóis/química , Adsorção , Sistemas de Liberação de Medicamentos , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA