Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0257924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587203

RESUMO

In this research, eight local mung bean (Vigna radiata) varieties were analyzed for their performance against two levels of CdCl2 solution (0.3 and 0.5 mM) alone and priming with gibberellic acid (GA3) (100 µM), salicylic acid (SA) (50 µM) and proline (5 mM) solution prior to Cd exposure. Mung bean seedlings were analyzed for disturbance in cytological, morphological, biochemical and enzymatic parameters under cadmium stress. For cytological studies, 48 h grown mung bean seedlings root tips were used to prepare slides and studied for percent mitotic index (MI%) and to calculate percent C-mitosis, laggard, sticky and fragmented chromosomes, pictures were captured by a Nikon camera (DS-Fi 1 Japan) attached with a microscope. One-week grown mung seedlings were studied for growth traits, malondialdehyde (MDA), protein, proline and antioxidant enzymes. ANOVA and DMR test of this research revealed that all the tested mung bean varieties and treatments were significantly different regarding mitotic index and number of chromosomal aberrations. Both the Cd treatments exhibited increased total chromosomal aberrations with different types and a maximum decrease in MI%. In pretreated samples, GA3, SA and proline serve as mitigating agents that reduce mutagenic effects of Cd in mung bean by increasing MI% and decreasing chromosomal aberrations as compared to non-pretreated samples. Both the Cd treatments showed a decrease in all growth traits. Total proteins were also found to be significantly reduced in a dose-dependent manner in all genotypes. Cd treatment increased the activities of all antioxidant enzymes tested. Cd caused oxidative damage as indicated by elevated levels of MDA content in treated samples in comparison to control. Proline content levels were also high in Cd treated seedlings indicating stress. Results demonstrated that pretreatment with phytohormones and proline before Cd were found to improve all morphological parameters, by altering antioxidant enzymes activities along with a decrease in MDA and proline contents as well. It was further noticed that the performance of GA3 was better at 0.3 mM Cd treatment while SA was found to be a good mitigating agent at 0.5 mM Cd stress in all tested mung bean varieties. This research concluded less deleterious effects of Cd on AZRI-2006 while more sensitivity to NM-51 towards Cd. Priming with phytohormones and proline is a user-friendly, economical, and simple mitigation strategy to reduce Cd toxicity in plants and get better yield from contaminated lands.


Assuntos
Cloreto de Cádmio/toxicidade , Reguladores de Crescimento de Plantas/farmacologia , Prolina/farmacologia , Ácido Salicílico/farmacologia , Vigna/crescimento & desenvolvimento , Aclimatação , DNA de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Índice Mitótico , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Vigna/efeitos dos fármacos , Vigna/genética , Vigna/metabolismo
2.
Chem Biol Drug Des ; 97(4): 914-929, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33342040

RESUMO

Cancer is the leading cause of mortality in the world. The major therapies for cancer treatment are chemotherapy, surgery, and radiation therapy. All these therapies expensive, toxic and show resistance. The plant-derived compounds are considered safe, cost-effective and target cancer through different pathways. In these pathways include oxidative stress, mitochondrial dependent and independent, STAT3, NF-kB, MAPKs, cell cycle, and autophagy pathways. One of the new plants derived compounds is Polyphyllin VII (PPVII), which target cancer through different molecular mechanisms. In literature, there is a review gap of studies on PPVII; therefore in the current review, we summarized the available studies on PPVII to provide a base for future research.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Saponinas/farmacologia , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Plant Cell Environ ; 41(6): 1453-1467, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29499078

RESUMO

The hexavalent form of chromium [Cr(VI)] causes a major reduction in yield and quality of crops worldwide. The root is the first plant organ that interacts with Cr(VI) toxicity, which inhibits primary root elongation, but the underlying mechanisms of this inhibition remain elusive. In this study, we investigate the possibility that Cr(VI) reduces primary root growth of Arabidopsis by modulating the cell cycle-related genes and that ethylene signalling contributes to this process. We show that Cr(VI)-mediated inhibition of primary root elongation was alleviated by the ethylene perception and biosynthesis antagonists silver and cobalt, respectively. Furthermore, the ethylene signalling defective mutants (ein2-1 and etr1-3) were insensitive, whereas the overproducer mutant (eto1-1) was hypersensitive to Cr(VI). We also report that high levels of Cr(VI) significantly induce the distribution and accumulation of auxin in the primary root tips, but this increase was significantly suppressed in seedlings exposed to silver or cobalt. In addition, genetic and physiological investigations show that AUXIN-RESISTANT1 (AUX1) participates in Cr(VI)-induced inhibition of primary root growth. Taken together, our results indicate that ethylene mediates Cr(VI)-induced inhibition of primary root elongation by increasing auxin accumulation and polar transport by stimulating the expression of AUX1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cromo/toxicidade , Etilenos/farmacologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 144: 62-71, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28601518

RESUMO

Bisphenol A (BPA), an important raw material in plastic industry, has become a serious environmental contaminant due to its wide spread use in different products and increasing release into the environment. BPA is known to cause adverse effects in living organisms including plants. Several studies reported that BPA affects growth and development in plants, mainly through oxidative stress. Plants are known to generally cope with stress mainly through hormonal regulation and adaptation, but little is known about the role of plant hormones in plants under BPA stress. The present study was conducted to investigate the role of ethylene in BPA induced oxidative stress in plants using Arabidopsis thaliana as a test plant. The response of ethylene insensitive mutants of Arabidopsis (ein2-1 and etr1-3) to BPA exposure was studied in comparison to the wild type Arabidopsis (WT). In all three genotypes, exposure to BPA adversely affected cellular structures, stomata and light-harvesting pigments. An increase in reactive oxygen species (ROS) lipid peroxidation and other oxidative stress markers indicated that BPA induced toxicity through oxidative stress. However, the overall results revealed that WT Arabidopsis had more pronounced BPA induced damages while ein2-1 and etr1-3 mutants withstood the BPA induced stress more efficiently. The activity of antioxidant enzymes and expression of antioxidants related genes revealed that the antioxidant defense system in both mutants was more efficiently activated than in WT against BPA induced oxidative stress, which further evidenced the involvement of ethylene in regulating BPA induced oxidative stress. It is concluded that ethylene perception and signaling may be involved in BPA induced oxidative stress responses in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Etilenos/metabolismo , Fenóis/toxicidade , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo
5.
Rev Environ Contam Toxicol ; 242: 1-60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27464847

RESUMO

Environmental pollution has increased many folds in recent years and in some places has reached levels that are toxic to living things. Among pollutant types, toxic heavy metals and metalloids are among the chemicals that pose the highest threat to biological systems (Jjemba 2004). Unlike organic pollutants, which are biodegradable, heavy metals are not degraded into less hazardous end products (Gupta et al. 2001). Low concentrations of some heavy metals are essential for life, but some of them like Hg, As, Pb and Cd are biologically non-essential and very toxic to living organisms. Even the essential metals may become toxic if they are present at a concentration above the permissible level (Puttaiah and Kiran 2008). For example, exposure to Zn and Fe oxides produce gastric disorder and vomiting, irritation of the skin and mucous membranes. Intake of Ni, Cr, Pb, Cd and Cu causes heart problems, leukemia and cancer, while Co and Mg can cause anemia and hypertension (Drasch et al. 2006). Similarly, various studies indicated that overexposure to heavy metals in air can cause cardiovascular disorders (Miller et al. 2007; Schwartz 2001), asthma (Wiwatanadate and Liwsrisakun 2011), bronchitis/emphysema (Pope 2000), and other respiratory diseases (Dominici et al. 2006).


Assuntos
Poluição Ambiental , Metais Pesados/toxicidade , Saúde Pública , Humanos , Paquistão , Medição de Risco
6.
PLoS One ; 11(12): e0167037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27911906

RESUMO

Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr) is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI) efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI) from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI) removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI). The maximum Cr (VI) adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI) from contaminated water.


Assuntos
Ageratina/crescimento & desenvolvimento , Compostos de Cromo/metabolismo , Modelos Biológicos , Águas Residuárias/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Concentração de Íons de Hidrogênio , Triticum , Purificação da Água/métodos
7.
J Ethnopharmacol ; 188: 177-92, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27174080

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Substantially, plants produce chemicals such as primary and secondary metabolites, which have significant applications in modern therapy. Indigenous people mostly rely on traditional medicines derived from medicinal plants. These plants have the capacity to absorb a variety of toxic elements. The ingestion of such plants for medicinal purpose can have imperative side effects. Hence, with regard to the toxicological consideration of medicinal plants, an effort has been made to review the elemental contents of ethno medicinally important plants of Pakistan and to highlight the existing gaps in knowledge of the safety and efficacy of traditional herbal medications. MATERIALS AND METHODS: Literature related to the elemental contents of ethno medicinal plants was acquired by utilizing electronic databases. We reviewed only macro-elemental and trace elemental contents of 69 medicinal plant taxa, which are traditionally used in Pakistan for the treatment of sundry ailments, including anemia, jaundice, cancer, piles, diarrhea, dysentery, headache, diabetes, asthma, blood purification, sedative and ulcer. RESULTS: A majority of plants showed elemental contents above the permissible levels as recommended by the World health organization (WHO). As an example, the concentrations of Cadmium (Cd) and Lead (Pb) were reportedly found higher than the WHO permissible levels in 43 and 42 medicinal plants, respectively. More specifically, the concentrations of Pb (54ppm: Silybum marianum) and Cd (5.25ppm: Artemisia herba-alba) were found highest in the Asteraceae family. CONCLUSIONS: The reported medicinal plants contain a higher amount of trace and toxic elements. Intake of these plants as traditional medicines may trigger the accumulation of trace and toxic elements in human bodies, which can cause different types of diseases. Thus, a clear understanding about the nature of toxic substances and factors affecting their concentrations in traditional medicines are essential prerequisites for efficacious herbal therapeutics with lesser or no side effects.


Assuntos
Medicina Tradicional , Extratos Vegetais/efeitos adversos , Plantas Medicinais/química , Oligoelementos/efeitos adversos , Animais , Etnobotânica , Etnofarmacologia , Humanos , Paquistão , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/classificação , Medição de Risco , Estações do Ano , Fatores de Tempo , Testes de Toxicidade , Oligoelementos/isolamento & purificação , Oligoelementos/farmacologia
8.
Environ Sci Pollut Res Int ; 23(15): 15551-64, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27126868

RESUMO

Cadmium (Cd) pollution is present in the world over especially in the industrialized parts of the world. To reduce Cd accumulation in various crops especially food crops, alleviating agents such as reduced glutathione (GSH) can be applied, which are capable either to exclude or to sequester Cd contamination. This study investigated the leaf-based spatial distribution of physiological, metabolic, and microstructural changes in two cotton cultivars (Coker 312 and TM-1) under GSH-mediated Cd stress using single levels of Cd (50 µM) and GSH (50 µM) both separately and in mix along with control. Results showed that GSH revived the morphology and physiology of both cotton cultivars alone or in mix with Cd. Cd uptake was enhanced in all segments of leaf and whole leaf upon the addition of GSH. GSH alleviated Cd-induced reduction in the photosynthetic pigment compositions and chlorophyll a fluorescence parameters. Mean data of biomarkers (2,3,5-triphenyltetrazolium (TTC), total soluble protein (TSP), malondialdehyde (MDA), hydrogen peroxide (H2O2)) revealed the adverse effects of Cd stress on leaf segments of both cultivars, which were revived by GSH. The oxidative metabolism induced by Cd stress was profoundly influenced by exogenous GSH application. The microstructural alterations were mainly confined to chloroplastic regions of leaves under Cd-stressed conditions, which were greatly revived upon the GSH addition. As a whole, Cd stress greatly affected TM-1 as compared to Coker 312. These results suggest a positive role of GSH in alleviating Cd-mediated changes in different leaf sections of cotton cultivars.


Assuntos
Cádmio/metabolismo , Glutationa/metabolismo , Gossypium/metabolismo , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Raízes de Plantas/metabolismo
9.
Environ Sci Pollut Res Int ; 23(9): 8431-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26782322

RESUMO

Plants face changes in leaves under lead (Pb) toxicity. Reduced glutathione (GSH) has several functions in plant metabolism, but its role in alleviating Pb toxicity in cotton leaves is still unknown. In the present study, cotton seedlings (28 days old) were exposed to 500 µM Pb and 50 µM GSH, both alone and in combination, for a period of 10 days, in the Hoagland solution under controlled growth conditions. Results revealed Pb-induced changes in cotton's leaf morphology, photosynthesis, and oxidative metabolism. However, exogenous application of GSH restored leaf growth. GSH triggered build up of chlorophyll a, chlorophyll b, and carotenoid contents and boosted fluorescence ratios (F v/F m and F v/F 0). Moreover, GSH reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2), and Pb contents in cotton leaves. Results further revealed that total soluble protein contents were decreased under Pb toxicity; however, exogenously applied GSH improved these contents in cotton leaves. Activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)) were also increased by GSH application under Pb toxicity. Microscopic analysis showed that excess Pb shattered thylakoid membranes in chloroplasts. However, GSH stabilized ultrastructure of Pb-stressed cotton leaves. These findings suggested that exogenously applied GSH lessened the adverse effects of Pb and improved cotton's tolerance to oxidative stress.


Assuntos
Glutationa/metabolismo , Gossypium/fisiologia , Chumbo/toxicidade , Substâncias Protetoras/metabolismo , Poluentes do Solo/toxicidade , Estresse Fisiológico/fisiologia , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Glutationa/farmacologia , Glutationa Redutase/metabolismo , Gossypium/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Substâncias Protetoras/farmacologia , Plântula/efeitos dos fármacos , Superóxido Dismutase/metabolismo
10.
Ecotoxicology ; 25(2): 329-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26603051

RESUMO

Pesticides are highly toxic substances. Their toxicity may not be absolutely specific to the target organisms but can adversely affect different processes in the non-target host plants. In the present study, the effect of over application of four commonly used pesticides (emamectin benzoate, alpha-cypermethrin, lambda-cyhalothrin and imidacloprid) was evaluated on the germination, seedling vigor and photosynthetic pigments in tomato. The obtained results revealed that seed germination was decreased by the pesticides and this effect was more prominent at early stages of exposure. All the tested pesticides reduced the growth of tomato when applied in higher concentration than the recommended dose, but at lower doses the pesticides had some stimulatory effects on growth as compared to the control. A similar effect of pesticides was observed on the photosynthetic pigments, i.e. a decrease in pigments concentrations was caused at higher doses but an increase was observed at lower doses of pesticides. The calculation of EC50 values for different parameters revealed the lowest EC50 values for emamectin (ranged as 51-181 mg/L) followed by alpha-cypermethrin (191.74-374.39), lambda-cyhalothrin (102.43-354.28) and imidacloprid (430.29-1979.66 mg/L). A comparison of the obtained EC50 values for different parameters of tomato with the recommended doses revealed that over application of these pesticides can be harmful to tomato crop. In a few cases these pesticides were found toxic even at the recommended doses. However, a field based study in this regard should be conducted to further verify these results.


Assuntos
Inseticidas/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Dissacarídeos/toxicidade , Germinação/efeitos dos fármacos , Imidazóis/toxicidade , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Neonicotinoides , Nitrilas/toxicidade , Nitrocompostos/toxicidade , Paquistão , Fotossíntese/efeitos dos fármacos , Piretrinas/toxicidade , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
11.
Ecotoxicology ; 20(6): 1442-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21562839

RESUMO

Pesticides are toxic chemicals used for agricultural as well as non-agricultural purposes. The toxicity of pesticides does not remain limited to the site of application but they also cause toxicity to non-target organisms in terrestrial as well as in aquatic environments. This study discusses the comparative toxicity of a carbamate (carbofuran) and an organophosphorus (malathion) pesticide to the freshwater flagellate Euglena gracilis during short- and long-term exposures. To evaluate the toxicity of the pesticides, different parameters of the flagellate, like cell density, motility, swimming velocity, cell shape, gravitactic orientation, photosynthetic efficiency, and concentration of light harvesting pigments, were used as end points. Carbofuran was found to be more toxic to E. gracilis than malathion and adversely affected almost all the tested parameters in short- and long-term experiments. The only significant adverse effect by malathion could be demonstrated on the swimming velocity of cells in short-term experiments. The adverse effects of the pesticides were more pronounced during short-term than during long-term exposure.


Assuntos
Carbofurano/toxicidade , Euglena gracilis/efeitos dos fármacos , Malation/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Água Doce/química , Água Doce/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA