Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 435: 114063, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35988637

RESUMO

Extensive literature has reported a link between stress and tumor progression, and between both of these factors and mental health. Despite the higher incidence of affective disorders in females and the neurochemical differences according to sex, female populations have been understudied. The aim of this study was therefore to analyze the effect of stress on tumor development in female OF1 mice. For this purpose, subjects were inoculated with B16F10 melanoma cells and exposed to the Chronic Social Instability Stress (CSIS) model. Behavioral, neurochemical and neuroendocrine parameters were analyzed. Female mice exposed to CSIS exhibited reduced body weight and increased arousal, but there was no evidence of depressive behavior or anxiety. Exposure to CSIS did not affect either corticosterone levels or tumor development, although it did provoke an imbalance in cerebral inflammatory cytokines, decreasing IL-10 expression (IL-6/IL-10 and TNF-α/IL-10); chemokines, increasing CX3CR1 expression (CX3CL1/CX3CR1); and glucocorticoid receptors, decreasing GR expression (MR/GR). In contrast, tumor development did not alter body weight and, although it did alter behavior, it did so to a much lesser extent. Tumor inoculation did not affect corticosterone levels, but increased the MR/GR ratio in the hippocampus and provoked an imbalance in cerebral inflammatory cytokines and chemokines, although differently from stress. These results underscore the need for experimental approaches that allow us to take sex differences into account when exploring this issue, since these results appear to indicate that the female response to stress is mediated by mechanisms different from those often proposed in relation to male mice.


Assuntos
Corticosterona , Interleucina-10 , Animais , Peso Corporal , Receptor 1 de Quimiocina CX3C , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Estresse Psicológico/metabolismo
2.
NPJ Regen Med ; 6(1): 20, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795700

RESUMO

Transplantation of several types of stem cells (SC) for the treatment of amyotrophic lateral sclerosis (ALS) has been evaluated in numerous Phase I/II clinical trials with inconclusive results. Here, we conducted a meta-analysis to systematically assess the outcome of SC therapy trials which report the evolution of each patient before and after cell administration. In this way, we aimed to determine the effect of the SC intervention despite individual heterogeneity in disease progression. We identified 670 references by electronic search and 90 full-text studies were evaluated according to the eligibility criteria. Eleven studies were included comprising 220 cell-treated patients who received mesenchymal (M) SC (n = 152), neural (N) SC (n = 57), or mononuclear cells (MNC: CD34, CD117, and CD133 positive cells) (n = 11). Our analyses indicate that whereas intrathecal injection of mesenchymal stromal cells appears to have a transient positive effect on clinical progression, as measured by the ALS functional rating score, there was a worsening of respiratory function measured by forced vital capacity after all interventions. Based on current evidence, we conclude that optimal cell product and route of administration need to be determined in properly controlled preclinical models before further advancing into ALS patients. In addition, in-depth understanding of disease mechanisms in subsets of patients will help tailoring SC therapy to specific targets and increase the likelihood of improving outcomes.

3.
Crit Rev Biotechnol ; 40(3): 283-291, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32054356

RESUMO

Recent advances in stem cell biology and molecular engineering have improved and simplified the methodology employed to create experimental chimeras, highlighting their value in basic research and broadening the spectrum of potential applications. Experimental chimeras have been used for decades during the generation of murine genetic models, this being especially relevant in developmental and regeneration studies. Indeed, their value for the research and modeling of human diseases was recognized by the 2007 Nobel Prize to Mario Capecchi, Martin Evans, and Oliver Smithies. More recently, their potential application in regenerative medicine has generated a lot of interest, particularly the enticing possibility to generate human organs for transplantation in livestock animals. In this review, we provide an update on interspecific chimeric organogenesis, its possibilities, current limitations, alternatives, and ethical issues.


Assuntos
Quimera/metabolismo , Animais , Temas Bioéticos , Quimera/classificação , Células-Tronco Embrionárias , Humanos , Camundongos , Modelos Genéticos , Organogênese , Medicina Regenerativa , Quimeras de Transplante
4.
J Neurochem ; 136(2): 285-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26316048

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação para Baixo/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Benzotiepinas/farmacologia , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Flavonas/farmacologia , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
5.
Mol Neurobiol ; 50(3): 1131-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24705818

RESUMO

Levodopa-induced dyskinesias (LID) are a frequent complication of Parkinson's disease pharmacotherapy that causes significant disability and narrows the therapeutic window. Pharmacological management of LID is challenging partly because the precise molecular mechanisms are not completely understood. Here, our aim was to determine molecular changes that could unveil targetable mechanisms underlying this drug complication. We examined the expression and downstream activity of dopamine receptors (DR) in the striatum of 1-methyl-4-phenyl-1,2,3,6 tetrahydropiridine (MPTP)-lesioned monkeys with and without L-DOPA treatment. Four monkeys were made dyskinetic and other four received a shorter course of L-DOPA and did not develop LID. Our results show that L-DOPA treatment induces an increase in DRD2 and DRD3 expression in the postcommissural putamen, but only DRD3 is correlated with the severity of LID. Dyskinetic monkeys show a hyperactivation of the canonical DRD1-signaling pathway, measured by an increased phosphorylation of protein kinase A (PKA) and its substrates, particularly DARPP32. In contrast, activation of the DRD2-signaling pathway, visible in the levels of Akt phosphorylated on Thr308 and GSK3ß on Ser9, is associated with L-DOPA treatment, independently of the presence of dyskinesias. Our data clearly demonstrate that dyskinetic monkeys present a dysregulation of the DRD3 receptor and the DRD1 pathway with a sustained increase of PKA activity in the postcommissural putamen. Importantly, we found that all signaling changes related to long-term L-DOPA administration are exquisitely restricted to the postcommissural putamen, which may be related to the recurrent failure of pharmacological approaches.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transtornos Parkinsonianos/metabolismo , Putamen/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Putamen/efeitos dos fármacos , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Neuropharmacology ; 79: 726-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24333147

RESUMO

Dopamine replacement with l-DOPA is the most effective therapy in Parkinson's disease. However, with chronic treatment, half of the patients develop an abnormal motor response including dyskinesias. The specific molecular mechanisms underlying dyskinesias are not fully understood. In this study, we used a well-characterized animal model to first establish the molecular differences between rats that did and did not develop dyskinesias. We then investigated the molecular substrates implicated in the anti-dyskinetic effect of buspirone, a 5HT1A partial agonist. Striatal protein expression profile of dyskinetic animals revealed increased levels of the dopamine receptor (DR)D3, ΔFosB and phospho (p)CREB, as well as an over-activation of the DRD1 signalling pathway, reflected by elevated ratios of phosphorylated DARPP32 and ERK2. Buspirone reduced the abnormal involuntary motor response in dyskinetic rats in a dose-dependent fashion. Buspirone (4 mg/kg) dramatically reduced the presence and severity of dyskinesias (by 83%) and normalized DARPP32 and ERK2 phosphorylation ratios, while the increases in DRD3, ΔFosB and pCREB observed in dyskinetic rats were not modified. Pharmacological experiments combining buspirone with 5HT1A and DRD3 antagonists confirmed that normalization of both pDARPP32 and pERK2 is required, but not sufficient, for blocking dyskinesias. The correlation between pDARPP32 ratio and dyskinesias was significant but not strong, pointing to the involvement of convergent factors and signalling pathways. Our results suggest that in dyskinetic rats DRD3 striatal over-expression could be instrumental in the activation of DRD1-downstream signalling and demonstrate that the anti-dyskinetic effect of buspirone in this model is correlated with DRD1 pathway normalization.


Assuntos
Antidiscinéticos/farmacologia , Antiparkinsonianos/efeitos adversos , Buspirona/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Receptores de Dopamina D1/metabolismo , Animais , Antiparkinsonianos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D3/antagonistas & inibidores , Receptores de Dopamina D3/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA