Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(5): 324, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37173333

RESUMO

Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on IMT and thereby on the therapeutic efficacy of MSCs has largely remained unexplored. Here we found impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mouse (MSC-Ob). MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue mitochondrial dysfunction and cell death in stress-induced airway epithelial cells. Pharmacological modulation of MSCs enhanced cardiolipin-dependent mitophagy and restored their IMT ability to airway epithelial cells. Therapeutically, these modulated MSCs attenuated features of allergic airway inflammation (AAI) in two independent mouse models by restoring healthy IMT. However, unmodulated MSC-Ob failed to do so. Notably, in human (h)MSCs, induced metabolic stress associated impaired cardiolipin-dependent mitophagy was restored upon pharmacological modulation. In summary, we have provided the first comprehensive molecular understanding of impaired mitophagy in obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention. A MSCs obtained from (HFD)-induced obese mice (MSC-Ob) show underlying mitochondrial dysfunction with a concomitant decrease in cardiolipin content. These changes prevent LC3-cardiolipin interaction, thereby reducing dysfunctional mitochondria sequestration into LC3-autophagosomes and thus impaired mitophagy. The impaired mitophagy is associated with reduced intercellular mitochondrial transport (IMT) via tunneling nanotubes (TNTs) between MSC-Ob and epithelial cells in co-culture or in vivo. B Pyrroloquinoline quinone (PQQ) modulation in MSC-Ob restores mitochondrial health, cardiolipin content, and thereby sequestration of depolarized mitochondria into the autophagosomes to alleviate impaired mitophagy. Concomitantly, MSC-Ob shows restoration of mitochondrial health upon PQQ treatment (MSC-ObPQQ). During co-culture with epithelial cells or transplantation in vivo into the mice lungs, MSC-ObPQQ restores IMT and prevents epithelial cell death. C Upon transplantation in two independent allergic airway inflammatory mouse models, MSC-Ob failed to rescue the airway inflammation, hyperactivity, metabolic changes in epithelial cells. D PQQ modulated MSCs restored these metabolic defects and restored lung physiology and airway remodeling parameters.


Assuntos
Cardiolipinas , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Cardiolipinas/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo
2.
Cells ; 11(19)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230930

RESUMO

Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , DNA Mitocondrial , Proteínas não Estruturais Virais/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosfoproteínas/metabolismo , SARS-CoV-2
3.
Oxid Med Cell Longev ; 2019: 1297484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772697

RESUMO

Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, which can lead to hepatocellular carcinoma. The role of HBV envelope proteins is crucial in viral morphogenesis, infection, and propagation. Thus, blocking the pleiotropic functions of these proteins especially the PreS1 and PreS2 domains of the large surface protein (LHBs) is a promising strategy for designing efficient antivirals against HBV infection. Unfortunately, the structure of the LHBs protein has not been elucidated yet, and it seems that any structure-based drug discovery is critically dependent on this. To find effective inhibitors of LHBs, we have modeled and validated its three-dimensional structure and subsequently performed a virtual high-throughput screening against the ZINC database using RASPD and ParDOCK tools. We have identified four compounds, ZINC11882026, ZINC19741044, ZINC00653293, and ZINC15000762, showing appreciable binding affinity with the LHBs protein. The drug likeness was further validated using ADME screening and toxicity analysis. Interestingly, three of the four compounds showed the formation of hydrogen bonds with amino acid residues lying in the capsid binding region of the PreS1 domain of LHBs, suggesting the possibility of inhibiting the viral assembly and maturation process. The identification of potential lead molecules will help to discover more potent inhibitors with significant antiviral activities.


Assuntos
Hepatite B/prevenção & controle , Simulação de Acoplamento Molecular/métodos , Proteínas do Envelope Viral/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA