Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1361847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469162

RESUMO

Introduction: Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-ß (Aß) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods: We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results: Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aß plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion: These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aß deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.

2.
J Prosthodont Res ; 67(4): 588-594, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36792221

RESUMO

PURPOSE: Prenatal stress affects the hippocampal structure and function in pups. Maternal chewing ameliorates hippocampus-dependent cognitive impairments induced by prenatal stress. In this study, we investigated hippocampal microglia-mediated neuroinflammation in pups of dams exposed to prenatal stress with or without chewing during gestation. METHODS: Pregnant mice were randomly assigned to control, stress, and stress/chewing groups. Stress and stress/chewing animals were subjected to restraint stress for 45 min three times daily from gestation day 12 to parturition, and were given a wooden stick to chew during the stress period. Four-month-old male pups were intraperitoneally administered with lipopolysaccharide (LPS). Serum corticosterone levels were determined 24 h after administration. The expression levels of hippocampal inflammatory cytokines were measured, and the microglia were analyzed morphologically. RESULTS: Prenatal stress increased serum corticosterone levels, induced hippocampal microglia priming, and facilitated the release of interleukin-1ß and tumor necrosis factor-α in the offspring. LPS treatment significantly increased the effects of prenatal stress on serum corticosterone levels, hippocampal microglial activation, and hippocampal neuroinflammation. Maternal chewing significantly inhibited the increase in serum corticosterone levels, suppressed microglial overactivation, and normalized inflammatory cytokine levels under basal prenatal stress conditions as well as after LPS administration. CONCLUSIONS: Our findings indicate that maternal chewing can alleviate the increase in corticosterone levels and inhibit hippocampal microglia-mediated neuroinflammation induced by LPS administration and prenatal stress in adult offspring.


Assuntos
Microglia , Doenças Neuroinflamatórias , Gravidez , Feminino , Camundongos , Animais , Masculino , Mastigação , Estresse Psicológico , Corticosterona/metabolismo , Corticosterona/farmacologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Hipocampo/patologia
3.
Cancers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497431

RESUMO

We assessed the effects of chewing behavior on the lung-metastasis-promoting impact of chronic psychological-stress in mice. Human breast-cancer cells (MDA-MB-231) were injected into the tail vein of female nude mice. Mice were randomly divided into stress, stress-with-chewing, and control groups. We created chronic stress by placing mice in small transparent tubes for 45 min, 3 times a day for 7 weeks. Mice in the stress-with-chewing group were allowed to chew wooden sticks during the experimental period. The histopathological examination showed that chronic psychological-stress increased lung metastasis, and chewing behavior attenuated the stress-related lung metastasis of breast-cancer cells. Chewing behavior decreased the elevated level of the serum corticosterone, normalized the increased expression of glucocorticoid, and attenuated the elevated expression of adrenergic receptors in lung tissues. We also found that chewing behavior normalized the elevated expression of inducible nitric oxide synthase, 4-hydroxynonenal, and superoxide dismutase 2 in lung tissues, induced by chronic stress. The present study demonstrated that chewing behavior could attenuate the promoting effects of chronic psychological-stress on the lung metastasis of breast-cancer cells, by regulating stress hormones and their receptors, and the downstream signaling-molecules, involving angiogenesis and oxidative stress.

4.
Arch Oral Biol ; 130: 105245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34438320

RESUMO

OBJECTIVE: To examine whether maternal chewing affects prenatal stress-induced behavioral alternations associated with the changes in apoptosis-related proteins and serotonin pathway of the mouse offspring. DESIGN: Pregnant mice were assigned to control, stress, and stress/chewing groups. Stress mice were placed in restraint tubes, from gestational day 12 until parturition. Stress/chewing mice were given a wooden stick for chewing during stress period. Morris water maze and hole-board tests were applied for behavioral alterations in one-month-old male pups. Hippocampal mRNA expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) was analyzed by quantitative real-time PCR. Serotonin and tryptophan hydroxylase expression level in the dorsal raphe nucleus was investigated immunohistochemically. RESULTS: Prenatal stress impaired the spatial learning, induced anxiety-like behavior, increased the ratio of hippocampal Bax/Bcl-2 expression, and decreased the expression of serotonin and tryptophan hydroxylase in dorsal raphe nucleus of the offspring. Maternal chewing ameliorated prenatal stress-induced cognitive impairment, anxiety-like behavior, and attenuated the increased ratio of hippocampal Bax/Bcl-2 expression, and the downregulated serotonin signaling in dorsal raphe nucleus of the offspring. CONCLUSIONS: Our results indicate that maternal chewing could improve prenatal stress-related anxiety-like behavior and cognitive impairment in mouse offspring, at least in part by affecting hippocampal apoptotic response and central serotonin pathway.


Assuntos
Disfunção Cognitiva , Efeitos Tardios da Exposição Pré-Natal , Animais , Ansiedade , Cognição , Feminino , Hipocampo , Masculino , Mastigação , Camundongos , Gravidez , Serotonina , Estresse Psicológico/complicações
5.
Brain Sci ; 11(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918787

RESUMO

We examined whether chewing behavior affects the tumor progression-enhancing impact of psychological stress. Human breast cancer cell line (MDA-MB-231) cells were inoculated into the mammary fat pads of athymic nude mice. The mice were assigned randomly to control, stress, and stress+chewing groups. Psychological stress was created by keeping mice in a transparent restraint cylinder for 45 min, three times a day, for 35 days after cell inoculation. Animals in the stress+chewing group were provided with a wooden stick for chewing on during the psychological stress period. Chewing behavior remarkably inhibited the tumor growth accelerated by the psychological stress. Immunohistochemical and Western blot findings revealed that chewing behavior during psychological stress markedly suppressed tumor angiogenesis and cell proliferation. In addition, chewing behavior decreased serum glucocorticoid levels and expressions of glucocorticoid and ß2-adrenergic receptors in tumors. Chewing behavior decreased expressions of inducible nitric oxide synthase and 4-hydroxynonenal, and increased expression of superoxide dismutase 2 in tumors. Our findings suggest that chewing behavior could ameliorate the enhancing effects of psychological stress on the progression of breast cancer, at least partially, through modulating stress hormones and their receptors, and the subsequent signaling pathways involving reactive oxygen and nitrogen species.

6.
Bone ; 120: 75-84, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30315998

RESUMO

Wnt10a is a member of the WNT family. Although deficiency of this gene causes symptoms related to teeth, hair, nails, and skin, we recently demonstrated a new phenotype of Wnt10a knockout (KO) mice involving bone and fat. The in vivo effect of the Wnt10a gene on bone and fat is unclear, and the relationship between bone/fat and muscle in Wnt10a signaling is also interesting. We aimed to evaluate the tissue changes in Wnt10a KO mice compared to wild-type mice and show the findings as a starting point to unravel the underlying mechanisms of in vivo interactions involving Wnt10a in bone, fat and muscle. Trabecular bone loss in the lower limbs of Wnt10a mice and decreased bone mineralization were observed. The adipose tissue in bone marrow was also decreased, and adipocyte differentiation was reduced. The body fat mass in Wnt10a KO mice was decreased, and white adipocytes in subcutaneous fat were converted to beige adipocytes. The muscle weight of the lower limbs was not decreased despite trabecular bone loss, but Gdf8/myostatin expression was reduced in the subcutaneous fat and gastrocnemius muscles of Wnt10a KO mice. Thus, in vivo deletion of Wnt10a inhibited osteogenic activity, promoted beige adipogenesis of white adipocytes and maintained muscle mass. These results suggest that regulation of Gdf8 by Wnt10a may help maintain the muscle mass of Wnt10a KO mice. This study was the first to histologically evaluate the bone, fat and muscle phenotypes of Wnt10a KO mice. The results of this study, which were obtained by investigating the three tissues together, could influence the understanding of in vivo interactions involving the Wnt10a gene.


Assuntos
Tecido Adiposo/metabolismo , Osso e Ossos/metabolismo , Músculos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Wnt/metabolismo , Adipogenia , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Deleção de Genes , Camundongos Knockout , Modelos Biológicos , Miostatina/metabolismo , Tamanho do Órgão , Osteogênese , Ligação Proteica
7.
Med Mol Morphol ; 51(3): 139-146, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29619545

RESUMO

Although the understanding of the complex pathogenesis for osteoporosis is appreciable, the underlying mechanism is not yet fully elucidated. There is a great need to further characterize the available animal models in osteoporosis research. The senescence-accelerated mouse prone 6 (SAMP6) mice have been developed as the spontaneous experimental model for senile osteoporosis. Here, we provide a comprehensive overview of current research regarding the bone morphological and molecular alterations and the possible mechanisms involved in these changes. There were significant decrease in trabecular bone mass at the axial and appendicular skeletal sites, with no marked alterations of cortical bone. Decreased bone formation on the endosteal surface and trabecular bone, and increased bone marrow adiposity were observed in SAMP6 mice. The elevated expression level of proliferator activator gamma (PPARγ) in the bone marrow suggest that PPARγ might regulate osteoblastic bone formation negatively in SAMP6 mice. The expression level of secreted frizzled-related protein 4 (Sfrp4) was found to be higher in SAMP6 mice. Sfrp4 is considered to suppress osteoblastic proliferation mediated by inhibition of Wnt signaling pathway. These findings may help us to gain more insight into the potential mechanism of senile osteoporosis.


Assuntos
Osso e Ossos/patologia , Modelos Animais de Doenças , Camundongos , Osteogênese , Osteoporose/patologia , Animais , Proliferação de Células , Humanos , Osteoblastos/patologia , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA