RESUMO
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are involved in the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). CAF-like cells were generated through direct co-culture of human bone marrow-derived mesenchymal stem cells, one of CAF origins, with ESCC cells. Periostin (POSTN) was found to be highly expressed in CAF-like cells. After direct co-culture, ESCC cells showed increased malignant phenotypes, such as survival, growth, and migration, as well as increased phosphorylation of Akt and extracellular signal-regulated kinase (Erk). Recombinant human POSTN activated Akt and Erk signaling pathways in ESCC cells, enhancing survival and migration. The suppression of POSTN in CAF-like cells by siRNA during direct co-culture also suppressed enhanced survival and migration in ESCC cells. In ESCC cells, knockdown of POSTN receptor integrin ß4 inhibited Akt and Erk phosphorylation, and survival and migration increased by POSTN. POSTN also enhanced mesenchymal stem cell and macrophage migration and endowed macrophages with tumor-associated macrophage-like properties. Immunohistochemistry showed that high POSTN expression in the cancer stroma was significantly associated with tumor invasion depth, lymphatic and blood vessel invasion, higher pathologic stage, CAF marker expression, and infiltrating tumor-associated macrophage numbers. Moreover, patients with ESCC with high POSTN expression exhibited poor postoperative outcomes. Thus, CAF-secreted POSTN contributed to tumor microenvironment development. These results indicate that POSTN may be a novel therapeutic target for ESCC.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Periostina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente TumoralRESUMO
Background/Aim: The relationship between gastric cancer and oral health has been reported in several studies. This study aimed to determine the relationship between the postoperative prognosis of gastric cancer and oral health using preoperative tooth loss as a simple index. Patients and Methods: We conducted a single-center retrospective cohort study. Patients were divided into two groups according to the number of tooth losses. The survival curve was constructed using the Kaplan-Meier method. We also performed univariate and multivariate analyses of overall survival based on Cox proportional hazard regression to determine prognostic factors. Results: A total of 191 patients were divided into two groups: those with seven or more tooth losses and those with less than seven tooth losses. The three-year overall survival rate was 71.5% in the group with seven or more tooth losses and 87.0% in the group with less than seven tooth losses. The group with seven or more tooth losses had a significantly lower overall survival rate compared to the group with less than seven tooth losses (p=0.0014). However, in multivariate analysis, tooth loss was not identified as an independent prognostic factor whereas age, clinical T stage, CEA level, and serum albumin level were independent poor prognostic factors. Conclusion: Preoperative tooth loss was not a prognostic factor for gastric cancer after gastrectomy, but tooth loss may be a simple and useful method for evaluating frailty in patients.
RESUMO
Tumor-associated macrophages (TAMs), one of the major components of the tumor microenvironment, contribute to the progression of esophageal squamous cell carcinoma (ESCC). We previously established a direct co-culture system of human ESCC cells and macrophages and reported the promotion of malignant phenotypes, such as survival, growth, and migration, in ESCC cells. These findings suggested that direct interactions between cancer cells and macrophages contribute to the malignancy of ESCC, but its underlying mechanisms remain unclear. In this study, we compared the expression levels of the interferon-induced genes between mono- and co-cultured ESCC cells using a cDNA microarray and found that interferon-inducible protein 16 (IFI16) was most significantly upregulated in co-cultured ESCC cells. IFI16 knockdown suppressed malignant phenotypes and also decreased the secretion of interleukin-1α (IL-1α) from ESCC cells. Additionally, recombinant IL-1α enhanced malignant phenotypes of ESCC cells through the Erk and NF-κB signaling. Immunohistochemistry revealed that high IFI16 expression in human ESCC tissues tended to be associated with disease-free survival and was significantly associated with tumor depth, lymph node metastasis, and macrophage infiltration. The results of this study reveal that IFI16 is involved in ESCC progression via IL-1α and imply the potential of IFI16 as a novel prognostic factor for ESCC.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Interferons/metabolismo , Interleucina-1alfa/metabolismo , Macrófagos/metabolismo , Processos Neoplásicos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Microambiente TumoralRESUMO
M2 macrophages contribute to the progression of oesophageal squamous cell carcinoma (ESCC); however, the roles of M2 macrophages in early ESCC remain unclear. To clarify the biological mechanisms underlying the interaction between M2 macrophages and oesophageal epithelial cells in early-stage ESCC, in vitro co-culture assays between the immortalised oesophageal epithelial cell line Het-1A and cytokine-defined M2 macrophages were established. Co-culture with M2 macrophages promoted the proliferation and migration of Het-1A cells via the mTOR-p70S6K signalling pathway activated by YKL-40, also known as chitinase 3-like 1, and osteopontin (OPN) that were hypersecreted in the co-culture supernatants. YKL-40 and OPN promoted the above phenotypes of Het-1A by making a complex with integrin ß4 (ß4). Furthermore, YKL-40 and OPN promoted M2 polarisation, proliferation, and migration of macrophages. To validate the pathological and clinical significances of in vitro experimental results, immunohistochemistry of human early ESCC tissues obtained by endoscopic submucosal dissection (ESD) was performed, confirming the activation of the YKL-40/OPN-ß4-p70S6K axis in the tumour area. Moreover, epithelial expression of ß4 and the number of epithelial and stromal infiltrating YKL-40- and OPN-positive cells correlated with the Lugol-voiding lesions (LVLs), a well-known predictor of the incidence of metachronous ESCC. Furthermore, the combination of high expression of ß4 and LVLs or high numbers of epithelial and stromal infiltrating YKL-40- and OPN-positive immune cells could more clearly detect the incidence of metachronous ESCC than each of the parameters alone. Our results demonstrated that the YKL-40/OPN-ß4-p70S6K axis played important roles in early-stage ESCC, and the high expression levels of ß4 and high numbers of infiltrating YKL-40- and OPN-positive immune cells could be useful predictive parameters for the incidence of metachronous ESCC after ESD. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Integrina beta4/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Neoplasias Esofágicas/patologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Relevância Clínica , Macrófagos/patologia , Linhagem Celular TumoralRESUMO
Tumor-associated macrophages (TAMs) contribute to disease progression in various cancers, including esophageal squamous cell carcinoma (ESCC). We have previously used an indirect co-culture system between ESCC cell lines and macrophages to analyze their interactions. Recently, we established a direct co-culture system to closely simulate actual ESCC cell-TAM contact. We found that matrix metalloproteinase 9 (MMP9) was induced in ESCC cells by direct co-culture with TAMs, not by indirect co-culture. MMP9 was associated with ESCC cell migration and invasion, and its expression was controlled by the Stat3 signaling pathway in vitro. Immunohistochemical analyses revealed that MMP9 expression in cancer cells at the invasive front ("cancer cell MMP9") was related to high infiltration of CD204 positive M2-like TAMs (p < 0.001) and was associated with worse overall and disease-free survival of patients (p = 0.036 and p = 0.038, respectively). Furthermore, cancer cell MMP9 was an independent prognostic factor for disease-free survival. Notably, MMP9 expression in cancer stroma was not associated with any clinicopathological factors or patient prognoses. Our results suggest that close interaction with TAMs infiltrating in cancer stroma or cancer nests induces MMP9 expression in ESCC cells, equipping them with more malignant features.
RESUMO
High infiltration of tumor-associated macrophages (TAMs), which contribute to the progression of several cancer types, is correlated with poor prognosis of esophageal squamous cell carcinoma (ESCC). In addition to the previously reported increase in migration and invasion, ESCC cells co-cultured directly with macrophages exhibited enhanced survival and growth. Furthermore, interleukin-related molecules are associated with ESCC; however, the precise mechanism underlying this association is unclear. Therefore, we explored the role of interleukin-related molecules in ESCC progression. A cDNA microarray analysis of monocultured and co-cultured ESCC cells revealed that the interleukin 7 receptor (IL-7R) was upregulated in ESCC cells co-cultured with macrophages. Overexpression of IL-7R promoted the survival and growth of ESCC cells by activating the Akt and Erk1/2 signaling pathways. The IL-7/IL-7R axis also contributed to the promotion of ESCC cell migration via the Akt and Erk1/2 signaling pathways. Furthermore, immunohistochemistry showed that ESCC patients with high IL-7R expression in cancer nests exhibited a trend toward poor prognosis in terms of disease-free survival, and showed significant correlation with increased numbers of infiltrating macrophages and cancer-associated fibroblasts. Therefore, IL-7R, which is upregulated when directly co-cultured with macrophages, may contribute to ESCC progression by promoting the development of various malignant phenotypes in cancer cells.
RESUMO
A 58-year-old man who underwent lower lobectomy of the right lung for primary pulmonary leiomyosarcoma (PPL) 4 years ago presented with epigastric pain and was diagnosed with small bowel intussusception caused by an intestinal mass. Partial resection of the small intestine was performed, and pathological examination revealed metastatic leiomyosarcoma. Masses in the left adrenal gland, subcutaneous tissue of the left upper arm, right pleura, jejunum, right trapezius muscle, and right adrenal gland were subsequently detected in the following 4 years. Resection was performed for each tumor, which was histologically confirmed as metastatic leiomyosarcoma. However, 1 month after the last surgery, multiple systemic metastases were found, thus, he is currently undergoing chemotherapy. The patient has been alive for 8 years and 4 months after the first operation for PPL. PPL is an extremely rare disease with no established treatment strategy for recurrences. Aggressive metastasectomy may be beneficial in selected cases.
RESUMO
Bionanocapsule (BNC) is hollow nanoparticle composed of the l-protein of the hepatitis B virus surface antigen. BNC allows targeted delivery of either genes or drugs only to hepatocytes, but not to other cell types. In this study, we attempted to alter the specificity of BNC by insertion of biotin-acceptor peptide (BAP), which is efficiently biotinylated using biotin ligase BirA from Escherichia coli. Using streptavidin as a linker, biotinylated BNC could be display various biotinylated ligands that are otherwise difficult to fuse with BNC, such as antibodies, synthetic peptides and functional molecules. BAP-fused BNC was efficiently biotinylated and effectively displayed streptavidin. Furthermore, we demonstrated that biotinylated BNC was internalized into targeted cells via biotinylated Nanobody displayed on the BNC surface. Biotinylated BNC permit display of diverse ligands, and thus have potential as a versatile carrier for drug delivery to a variety of target cells.