Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010578

RESUMO

Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.


Assuntos
Astrocitoma , Exossomos , Fotoquimioterapia , Aminoácidos , Animais , Astrocitoma/tratamento farmacológico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ratos , Rosa Bengala/química , Rosa Bengala/farmacologia
2.
J Pers Med ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34683083

RESUMO

Photodynamic therapy (PDT) has recently attracted interest as an innovative and adjuvant treatment for different cancers including malignant gliomas. Among these, Glioblastoma (GBM) is the most prevalent neoplasm in the central nervous system. Despite conventional therapeutic approaches that include surgical removal, radiation, and chemotherapy, GBM is characterized by an extremely poor prognosis and a high rate of recurrence. PDT is a physical process that induces tumor cell death through the genesis and accumulation of reactive oxygen species (ROS) produced by light energy interaction with a photosensitizing agent. In this contribution, we explored the potentiality of the plant alkaloid berberine (BBR) as a photosensitizing and cytotoxic agent coupled with a PDT scheme using a blue light source in human established astrocytoma cell lines. Our data mainly indicated for the combined BBR-PDT scheme a potent activation of the apoptosis pathway, through a massive ROS production, a great extent of mitochondria depolarization, and the sub-sequent activation of caspases. Altogether, these results demonstrated that BBR is an efficient photosensitizer agent and that its association with PDT may be a potential anticancer strategy for high malignant gliomas.

3.
Cells ; 9(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640653

RESUMO

Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.


Assuntos
Membranas Artificiais , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/química , Nanomedicina/métodos
4.
Cells ; 9(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443613

RESUMO

Adaptation of glioblastoma to caloric restriction induces compensatory changes in tumor metabolism that are incompletely known. Here we show that in human glioblastoma cells maintained in exhausted medium, SHC adaptor protein 3 (SHC3) increases due to down-regulation of SHC3 protein degradation. This effect is reversed by glucose addition and is not present in normal astrocytes. Increased SHC3 levels are associated to increased glucose uptake mediated by changes in membrane trafficking of glucose transporters of the solute carrier 2A superfamily (GLUT/SLC2A). We found that the effects on vesicle trafficking are mediated by SHC3 interactions with adaptor protein complex 1 and 2 (AP), BMP-2-inducible protein kinase and a fraction of poly ADP-ribose polymerase 1 (PARP1) associated to vesicles containing GLUT/SLC2As. In glioblastoma cells, PARP1 inhibitor veliparib mimics glucose starvation in enhancing glucose uptake. Furthermore, cytosol extracted from glioblastoma cells inhibits PARP1 enzymatic activity in vitro while immunodepletion of SHC3 from the cytosol significantly relieves this inhibition. The identification of a new pathway controlling glucose uptake in high grade gliomas represents an opportunity for repositioning existing drugs and designing new ones.


Assuntos
Adaptação Fisiológica , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glucose/deficiência , Transdução de Sinais , Adaptação Fisiológica/efeitos dos fármacos , Benzimidazóis/farmacologia , Neoplasias Encefálicas/ultraestrutura , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Glioblastoma/ultraestrutura , Transportador de Glucose Tipo 1/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Ácido Láctico/biossíntese , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src/química , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo
5.
Nanomedicine ; 23: 102113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669084

RESUMO

C109 is a potent but poorly soluble FtsZ inhibitor displaying promising activity against Burkholderia cenocepacia, a high-risk pathogen for cystic fibrosis (CF) sufferers. To harness C109 for inhalation, we developed nanocrystal-embedded dry powders for inhalation suspension consisting in C109 nanocrystals stabilized with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) embedded in hydroxypropyl-ß-cyclodextrin (CD). The powders could be safely re-dispersed in water for in vitro aerosolization. Owing to the presence of a PEG shell, the rod shape and the peculiar aspect ratio, C109 nanocrystals were able to diffuse through artificial CF mucus. The promising technological features were completed by encouraging in vitro/in vivo effects. The formulations displayed no toxicity towards human bronchial epithelial cells and were active against planktonic and sessile B. cenocepacia strains. The efficacy of C109 nanosuspensions in combination with piperacillin was confirmed in a Galleria mellonella infection model, strengthening their potential for combined therapy of B. cenocepacia lung infections.


Assuntos
Antibacterianos , Proteínas de Bactérias/antagonistas & inibidores , Brônquios/microbiologia , Infecções por Burkholderia/tratamento farmacológico , Burkholderia cenocepacia/crescimento & desenvolvimento , Fibrose Cística/tratamento farmacológico , Proteínas do Citoesqueleto/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Células Epiteliais/microbiologia , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Infecções por Burkholderia/metabolismo , Infecções por Burkholderia/patologia , Linhagem Celular Tumoral , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico
6.
Cells ; 8(4)2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013754

RESUMO

Celiac disease (CD) is a chronic systemic autoimmune disorder that is triggered by the ingestion of gliadin peptides, the alcohol-soluble fraction of wheat gluten. These peptides, which play a key role in the immune response that underlies CD, spontaneously form aggregates and exert a direct toxic action on cells due to the increase in the reactive oxygen species (ROS) levels. Furthermore, peptic-tryptic digested gliadin peptides (PT-gliadin) lead to an impairment in the autophagy pathway in an in vitro model based on Caco-2 cells. Considering these premises, in this study we have analyzed different mTOR-independent inducers, reporting that the disaccharide trehalose, a mTOR-independent autophagy activator, rescued the autophagy flux in Caco-2 cells treated with digested gliadin, as well as improved cell viability. Moreover, trehalose administration to Caco-2 cells in presence of digested gliadin reduced the intracellular levels of these toxic peptides. Altogether, these results showed the beneficial effects of trehalose in a CD in vitro model as well as underlining autophagy as a molecular pathway whose modulation might be promising in counteracting PT-gliadin cytotoxicity.


Assuntos
Doença Celíaca/metabolismo , Trealose/farmacologia , Autofagia/efeitos dos fármacos , Células CACO-2 , Doença Celíaca/imunologia , Sobrevivência Celular/efeitos dos fármacos , Gliadina/efeitos adversos , Gliadina/química , Gliadina/toxicidade , Glutens , Células HT29 , Humanos , Modelos Biológicos , Peptídeos , Espécies Reativas de Oxigênio , Trealose/metabolismo , Triticum/metabolismo
7.
PLoS One ; 13(11): e0205967, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403761

RESUMO

The lack of direct neurophysiological recordings from the thalamus and the cortex hampers our understanding of vegetative state/unresponsive wakefulness syndrome and minimally conscious state in humans. We obtained microelectrode recordings from the thalami and the homolateral parietal cortex of two vegetative state/unresponsive wakefulness syndrome and one minimally conscious state patients during surgery for implantation of electrodes in both thalami for chronic deep brain stimulation. We found that activity of the thalamo-cortical networks differed among the two conditions. There were half the number of active neurons in the thalami of patients in vegetative state/unresponsive wakefulness syndrome than in minimally conscious state. Coupling of thalamic neuron discharge with EEG phases also differed in the two conditions and thalamo-cortical cross-frequency coupling was limited to the minimally conscious state patient. When consciousness is physiologically or pharmacologically reversibly suspended there is a significant increase in bursting activity of the thalamic neurons. By contrast, in the thalami of our patients in both conditions fewer than 17% of the recorded neurons showed bursting activity. This indicates that these conditions differ from physiological suspension of consciousness and that increased thalamic inhibition is not prominent. Our findings, albeit obtained in a limited number of patients, unveil the neurophysiology of these conditions at single unit resolution and might be relevant for inspiring novel therapeutic options.


Assuntos
Transtornos da Consciência/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Potenciais de Ação/fisiologia , Transtornos da Consciência/fisiopatologia , Eletroencefalografia , Humanos , Microeletrodos , Neurônios/fisiologia , Lobo Parietal/fisiopatologia , Estado Vegetativo Persistente/diagnóstico por imagem , Estado Vegetativo Persistente/fisiopatologia , Tálamo/fisiopatologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30297366

RESUMO

To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Burkholderia cenocepacia/genética , Proteínas do Citoesqueleto/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/tratamento farmacológico , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/efeitos dos fármacos , Burkholderia cenocepacia/isolamento & purificação , Caenorhabditis elegans/microbiologia , Fibrose Cística/microbiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Genes Essenciais , Proteínas de Fluorescência Verde/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mutação
9.
Neoplasia ; 19(4): 364-373, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28319810

RESUMO

Glucose transport across glioblastoma membranes plays a crucial role in maintaining the enhanced glycolysis typical of high-grade gliomas and glioblastoma. We tested the ability of two inhibitors of the glucose transporters GLUT/SLC2A superfamily, indinavir (IDV) and ritonavir (RTV), and of one inhibitor of the Na/glucose antiporter type 2 (SGLT2/SLC5A2) superfamily, phlorizin (PHZ), in decreasing glucose consumption and cell proliferation of human and murine glioblastoma cells. We found in vitro that RTV, active on at least three different GLUT/SLC2A transporters, was more effective than IDV, a specific inhibitor of GLUT4/SLC2A4, both in decreasing glucose consumption and lactate production and in inhibiting growth of U87MG and Hu197 human glioblastoma cell lines and primary cultures of human glioblastoma. PHZ was inactive on the same cells. Similar results were obtained when cells were grown in adherence or as 3D multicellular tumor spheroids. RTV treatment but not IDV treatment induced AMP-activated protein kinase (AMPKα) phosphorylation that paralleled the decrease in glycolytic activity and cell growth. IDV, but not RTV, induced an increase in GLUT1/SLC2A1 whose activity could compensate for the inhibition of GLUT4/SLC2A4 by IDV. RTV and IDV pass poorly the blood brain barrier and are unlikely to reach sufficient liquoral concentrations in vivo to inhibit glioblastoma growth as single agents. Isobologram analysis of the association of RTV or IDV and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or 4-methyl-5-oxo-2,3,4,6,8-pentazabicyclo[4.3.0]nona-2,7,9-triene-9-carboxamide (TMZ) indicated synergy only with RTV on inhibition of glioblastoma cells. Finally, we tested in vivo the combination of RTV and BCNU on established GL261 tumors. This drug combination increased the overall survival and allowed a five-fold reduction in the dose of BCNU.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Carmustina/farmacologia , Dacarbazina/análogos & derivados , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Glioma/diagnóstico , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/mortalidade , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Camundongos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 6: 32487, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580679

RESUMO

Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Burkholderia cenocepacia/efeitos dos fármacos , Dicetopiperazinas/farmacologia , Inibidores Enzimáticos/farmacologia , Ligases/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/antagonistas & inibidores , 4-Butirolactona/biossíntese , 4-Butirolactona/genética , Animais , Antibacterianos/síntese química , Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/enzimologia , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Dicetopiperazinas/síntese química , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Ligases/genética , Ligases/metabolismo , Percepção de Quorum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Virulência
11.
J Neurooncol ; 120(2): 245-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25062668

RESUMO

Shc3 protein levels are high in human glioblastoma but they decrease in vitro. We found that SHC3 mRNA and protein increased when glioblastoma cells grew as multicellular tumor spheroid (MTS). Shc3 expression was also induced in adherent cultures by increasing cell density. Among the Shc family members, only Shc2 and Shc3 increased with cell density. Shc3 and focal adhesion kinase (Fak) interact as shown by co-immunoprecipitation. Inhibition of Fak activation reduced Shc3 increase and MTS formation and changed Shc3 phosphorylation pattern. Our results suggest that in gliomas cell density modulates Shc3 protein levels and its activity, at least in part, through Fak activation.


Assuntos
Apoptose , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Western Blotting , Contagem de Células , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/genética , Glioblastoma/genética , Humanos , Imunoprecipitação , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína 2 de Transformação que Contém Domínio 2 de Homologia de Src , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src , Células Tumorais Cultivadas
12.
Autophagy ; 7(8): 840-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21478678

RESUMO

Malignant gliomas are the most common and lethal primary central nervous system neoplasms. Several intriguing lines of evidence have recently emerged indicating that the cellular prion protein (PrPC) may exert neuro- and cyto-protective functions: PrPC overexpression protects cultured neurons and also tumor cell lines exposed to various pro-apoptotic stimuli while, on the contrary, PrPC silencing sensitizes Adriamycin-resistant human breast carcinoma cells to TRAIL-mediated cell death. In order to determine if PrPC is involved in the resistance of glial tumors to cell death, the effects of cellular prion protein downregulation by antisense approach were investigated in different human malignant glioma cell lines. PrPC downregulation induced profound morphological changes and significant cell death. In addition, a significant tumor volume reduction was noted after PrPC silencing in a EGFP-GL261 glioma murine model. Investigations of the molecular effects induced by PrPC silencing were carried out on T98G human glioma cells by analysing autophagic as well as typical apoptotic markers (nuclear morphology, caspase-3/7, p53 and PARP-1). The results indicated that apoptosis was not induced after PrPC downregulation while, on the contrary, electron microscopy analysis, and an accumulation of GFP-LC3-II in autophagosomal membranes of GFP-LC3 transfected cells, indicated a predominant activation of autophagy. PrPC silencing also led to induction of LC3-II, increase in Beclin-1 and a concomitant decrease in p62, Bcl-2 and in the phosphorylation of 4E-BP1, a target of mTOR autophagy signaling. In conclusion, our results show for the first time that interfering with the cellular prion protein expression could modulate autophagy-dependent cell death pathways in glial tumor cells.


Assuntos
Autofagia/efeitos dos fármacos , DNA/metabolismo , Inativação Gênica/efeitos dos fármacos , Glioma/patologia , Oligonucleotídeos Antissenso/farmacologia , Proteínas PrPC/genética , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 7 Relacionada à Autofagia , Proteína Beclina-1 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas PrPC/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Enzimas Ativadoras de Ubiquitina/metabolismo
13.
J Biomed Biotechnol ; 2010: 301067, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20981146

RESUMO

Doppel (Dpl) is a membrane-bound glycoprotein mainly expressed in the testis of adult healthy people. It is generally absent in the central nervous system, but its coding gene sequence is ectopically expressed in astrocytoma specimens and in derived cell lines. In this paper, we investigated the expression and the biochemical features of Dpl in a panel of 49 astrocytoma specimens of different WHO malignancy grades. As a result, Dpl was expressed in the majority of the investigated specimens (86%), also including low grade samples. Importantly, Dpl exhibited different cellular localizations and altered glycan moieties composition, depending on the tumor grade. Most low-grade astrocytomas (83%) showed a membrane-bound Dpl, like human healthy testis tissue, whereas the majority of high-grade astrocytomas (75%) displayed a cytosolic Dpl. Deglycosylation studies with N-glycosidase F and/or neuraminidase highlighted defective glycan moieties and an unexpected loss of sialic acid. To find associations between glial tumor progression and Dpl biochemical features, predictive bioinformatics approaches were produced. In particular, Decision tree and Nomogram analysis showed well-defined Dpl-based criteria that separately clustered low-and high-grade astrocytomas. Taken together, these findings show that in astrocytomas, Dpl undergoes different molecular processes that might constitute additional helpful tools to characterize the glial tumor progression.


Assuntos
Astrocitoma/patologia , Biomarcadores Tumorais , Neoplasias Encefálicas/patologia , Príons/química , Príons/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/metabolismo , Western Blotting , Neoplasias Encefálicas/metabolismo , Membrana Celular/metabolismo , Criança , Análise por Conglomerados , Citoplasma/metabolismo , Progressão da Doença , Feminino , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/isolamento & purificação , Proteínas Ligadas por GPI/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Ácido N-Acetilneuramínico/metabolismo , Valor Preditivo dos Testes , Príons/isolamento & purificação
14.
J Biomed Biotechnol ; 2009: 924565, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19657395

RESUMO

In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression. PTEN and MMP9 mRNA levels were also employed to identify subgroups of specimens within the different glioma malignancy grades and to define a gene expression-based diagnostic classification scheme. In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.


Assuntos
Biomarcadores Tumorais/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico , Glioma/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Glioma/genética , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
15.
Cell Oncol ; 30(6): 491-501, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18936526

RESUMO

Doppel (Dpl) protein is the paralogue of the cellular prion (PrP(C)) protein. In humans, Dpl is expressed almost exclusively in testis where it is involved in spermatogenesis. Recently, the protein has been described to be ectopically expressed in astrocytomas and its potential association to the brain tumor malignancy progression has been advanced. In this study, we aimed to investigate in vitro the potential involvement of Dpl in the tumor cell migration: to this purpose, Dpl expression was reduced in the IPDDC-A2 astrocytoma-derived cell line, by means of antisense and siRNA approaches; migration rates were then evaluated by means of a scratch wound healing assay. As a result, the cellular migration was sensibly reduced after Dpl silencing. Following a complementary approach, in HeLa cells, showing very low endogenous Dpl expression, the protein expression was induced by transfection and stabilization of an eukaryotic expression vector containing the doppel gene coding sequence. These stably Dpl-overexpressing cells revealed a significant increase in the migration rate, compared to untreated and control cells. In addition, Dpl-forced expression induced substantial changes in the cell morphology. Of note, in these cells, viability examination by means of tetrazolium-based assay did not reveal differences in the proliferation; on the contrary, a variation in density-dependent growth, leading to an increase of cell contact inhibition was highlighted. These results, in conclusion, might suggest a potential and functional role for Dpl in tumor cells migratory and morphological behaviours and address to future gene-targeted therapeutic interventions.


Assuntos
Movimento Celular/fisiologia , Príons/fisiologia , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas Ligadas por GPI , Células HeLa , Humanos , Príons/genética , Príons/metabolismo , RNA Interferente Pequeno/genética , Transfecção
16.
Cell Oncol ; 30(4): 337-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18607068

RESUMO

Doppel, a prion-like protein, is a GPI-membrane anchored protein generally not expressed in the Central Nervous System (CNS) of different mammalian species, including human. Nevertheless, in astrocytomas, a particular kind of glial tumors, the doppel encoding gene (PRND) is over-expressed and the corresponding protein product (Dpl) is ectopically localized in the cytoplasm of the tumor cells. In this study we have analysed the sub-cellular localization of Dpl using double-immunofluorescence staining and confocal microscopy examinations in two astrocytoma-derived human cell lines (IPDDC-A2 and D384-MG). Our results confirmed that Dpl is localized in the cytoplasm of the astrocytoma cells and indicated that it is mostly associated with Lamp-1 and Limp-2 positive lysosomal vesicles and, marginally, to the Golgi apparatus and other cellular organelles. Noticeably, none of the examined tumor cells showed a membrane-Dpl localization. The membrane-associated Dpl expression was restored after the transfection of the astrocytoma cells with mutated Dpl-expression vectors in its glycosylation sites. Additionally, Dpl showed altered expression and traffic using the acidotropic agent ammonium chloride, leading to the accumulation of Dpl in nascent exocytic vesicles. Altogether, these results indicated that in the astrocytic tumor cells Dpl has an altered biosynthetic trafficking, likely derived from abnormal post-translational processes: these modifications do not permit the localization of Dpl in correspondence of the plasma membrane and lead to its intracellular accumulation in the lysosomes. In these proteolytic compartments, the astrocytic tumor cells might provide to the degradation of the excess of a potentially cytotoxic Dpl product.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Oligodendroglioma/metabolismo , Príons/metabolismo , Adulto , Cloreto de Amônio/farmacologia , Astrócitos/ultraestrutura , Neoplasias Encefálicas/patologia , Compartimento Celular , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas Ligadas por GPI , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glicosilação , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Proteínas Mutantes/análise , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligodendroglioma/patologia , Príons/análise , Príons/genética , Transporte Proteico , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
17.
Oncol Rep ; 16(6): 1325-32, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17089057

RESUMO

Doppel (Dpl) is a paralogue of the mammalian Prion (PrP) protein. It is abundant in testis and, unlike PrP, it is expressed at low levels in the adult central nervous system (CNS). Besides, Dpl overexpression correlates with some prion-disease pathological features, such as ataxia and death of cerebellar neurons. Recently, ectopic expression of doppel was found in two different tumor types, specifically in glial and haematological cancers. In this study the doppel gene (PRND) mRNA and protein expression in PRT-HU2 and IPDDC-A2 astrocytoma-derived cell lines was investigated. Northern blot analysis revealed two equally abundant PRND mRNA isoforms, while real-time PCR, on nuclear and cytoplasmic RNA fractions, and cRNA in situ hybridization, on astrocytoma cells and bioptical specimens, showed a nuclear retention of PRND transcripts. Western blot analysis showed that the amount of protein expressed is low compared to the level of mRNA. Moreover deglycosylation studies indicated that Dpl undergoes unusual glycosylation processes. Immunohistochemistry experiments demonstrated that Dpl was mainly localised in the cytoplasm of the astrocytic tumor cells, and that it failed to be GPI-anchored to the cell membrane. This unusual cellular localization was also confirmed through EGFP-Dpl expression in astrocytomas; on the contrary, HeLa cells exhibited the expected Dpl membrane localization. Our findings suggest an aberrant doppel gene expression pattern, characterized by a substantial nuclear retention of the transcript, an altered post-translational modification of the protein and an unusual cytoplasmic localization.


Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Núcleo Celular/metabolismo , Príons/biossíntese , RNA Mensageiro/metabolismo , Astrocitoma/genética , Northern Blotting , Western Blotting , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Citoplasma/metabolismo , Proteínas Ligadas por GPI , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Biossíntese de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção
18.
Anticancer Res ; 26(6B): 4539-47, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17201176

RESUMO

BACKGROUND: Doppel (Dpl) is a homologue of the prion protein (PrPC). In contrast to PrP(C), Dpl is dispensable for prion disease, but appears to have an essential function in male spermatogenesis. Recently, Dpl has been found to be aberrantly expressed in astrocytic and leukaemic tumor specimens, showing a peculiar cytosolic cellular localization. The aim of this study was to clarify some of the putative Dpl interacting proteins. MATERIALS AND METHODS: A yeast two hybrid system was employed and the results were verified by co-immunoprecipitation using transfected cells. RESULTS: Several potential Dpl-binding candidates were identified and, among them, the receptor for activated C-kinase (RACK1) protein was further investigated. RACK1 deletion mutants showed that some of its WD containing domains were directly involved in the binding with Dpl. Our data showed that Dpl interacts with RACK1 by means of its structured globular carboxyl-terminal region. CONCLUSION: This new Dpl interacting partner might suggest functional hypotheses about the role of this protein in an astrocytoma context where Dpl was found ectopically expressed.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Príons/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Bases , Primers do DNA , Proteínas Ligadas por GPI , Células HeLa , Humanos , Ligação Proteica , Receptores de Quinase C Ativada , Técnicas do Sistema de Duplo-Híbrido
19.
Anticancer Res ; 25(6B): 4369-74, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16309242

RESUMO

BACKGROUND: The doppel protein (Dpl) is a newly recognized cellular prion protein (PrP(C))-like molecule encoded by a novel gene locus, PRND, located on the same chromosomal region of the PrP(C) coding gene. Recently, Dpl was shown to be aberrantly expressed in astrocytic tumor specimens and in astrocytoma-derived cell lines, showing a peculiar cytoplasmic localization. Here, Dpl interactions with some of the prion-interacting proteins were studied. In particular, whether the tumor astrocytic environment is suitable for doppel interaction with GFAP and Grb2 proteins, as well as with the PrPC protein itself was investigated. MATERIALS AND METHODS: In order to verify our hypothesis, an innovative mammalian two-hybrid system and co-immunoprecipitation assays were employed. RESULTS: The results reported the absence of protein interactions. Our findings provided evidence that, in our astrocytoma cell-based model, Dpl does not share with PrP(C) the ability to interact with GFAP and Grb2. CONCLUSION: Identifying Dpl ligands may provide new insights into the involvement of Dpl in astrocytoma tumor progression.


Assuntos
Astrocitoma/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas PrPC/metabolismo , Príons/metabolismo , Proteínas Ligadas por GPI , Células HeLa , Humanos , Imunoprecipitação
20.
Gene ; 356: 101-8, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15964157

RESUMO

The PRND gene encodes Doppel (Dpl), a protein that is strongly expressed in testis and at much lower levels in other tissues. Despite the recent discovery of Dpl involvement in spermiogenesis and in apoptotic death of cerebellar neurons, respectively in wild type and transgenic mice, the physiological role of this prion-like protein remains unknown. To better understand which factors may contribute to the modulation of PRND activity, a study of the bovine promoter region was performed. First, the transcription start site of PRND mRNA was identified using an innovative fluorescently labelled oligonucleotide extension (FLOE) method. The initiation site mapped 129 nt upstream of the protein coding sequence and represents a refinement of a previous assignment based on RACE. Second, deletion mutants of the 4530 nt encompassing 2704 nt 5' of the bovine PRND, exon 1, intron 1, and the first 6 nt of exon 2, have been investigated with CAT-reporter assays in order to identify critical elements for the activation of the gene. The results showed that the region -323/+32 (+1 is the transcription start site mapped by FLOE) represents the promoter region and contains positive cis-acting elements (CCAAT and E box) confirming previous reports with the mouse gene. Additional regulatory elements, including binding sites for repressor molecules, have been identified upstream of that region and in the first portion of intron 1, suggesting a complex tissue-specific regulation of Doppel gene expression.


Assuntos
Bovinos/genética , Regiões Promotoras Genéticas/genética , Proteínas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Elementos de Resposta/genética , Análise de Sequência de DNA/métodos , Testículo/metabolismo , Sítio de Iniciação de Transcrição , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA