Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 452: 114568, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37414223

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative condition in civilizations worldwide. The distinctive occurrence of amyloid-beta (Aß) accumulation into insoluble fibrils is part of the disease pathophysiology with Aß42 being the most toxic and aggressive Aß species. The polyphenol, p-Coumaric acid (pCA), has been known to boost a number of therapeutic benefits. Here, pCA's potential to counteract the negative effects of Aß42 was investigated. First, pCA was confirmed to reduce Aß42 fibrillation using an in vitro activity assay. The compound was next examined on Aß42-exposed PC12 neuronal cells and was found to significantly decrease Aß42-induced cell mortality. pCA was then examined using an AD Drosophila melanogaster model. Feeding of pCA partially reversed the rough eye phenotype, significantly lengthened AD Drosophila's lifespan, and significantly enhanced the majority of the AD Drosophila's mobility in a sex-dependent manner. The findings of this study suggest that pCA may have therapeutic benefits for AD.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Drosophila , Drosophila melanogaster , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
2.
Trop Life Sci Res ; 34(1): 185-218, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37065800

RESUMO

Bagworm Metisa plana is one of the major pests in Malaysia's oil palm plantation, with infestation resulting in huge economical loss. Currently, the microbial profile of the bagworm has yet to be study. Understanding the biology of the pest such as the bacterial community is crucial as bacteria associated with insects often provide benefits to the insect, giving the insect host a better chance of survival. Here, 16S amplicon sequencing was used to identify the bacteria community of M. plana. Additionally, two comparisons were made, the bacterial communities between two larval stages (early instar stage and late instar stage) from outbreak area; the bacterial communities of late instar stage larvae from non-outbreak between outbreak areas. From this study, it was found that the bacterial community of M. plana consisted of Proteobacteria, Actinobacteria, Bacterioidetes, Firmicutes and other minor phyla, with Proteobacteria being the most dominant phylum. Furthermore, bacterial genera of M. plana consisted of Pantoea, Curtobacterium, Pseudomonas, Massilia and other minor genera, with Pantoea being the most dominant. It was also found that the alpha and beta diversity in both comparisons were not significantly different. We present our data as a first insight towards the bacterial community of M. plana, paving a way towards understanding the biology of the bagworm M. plana.


Metisa plana adalah salah satu daripada perosak utama dalam ladang kelapa sawit Malaysia, dengan serangan yang mengakibatkan kerugian besar kepada ekonomi. Pada masa ini, profil mikrob bagworm masih belum dikaji. Memahami biologi perosak seperti komuniti bakteria adalah penting kerana bakteria yang dikaitkan dengan serangga sering memberi manfaat kepada serangga, memberikan hos serangga peluang untuk terus hidup. Penjujukan amplikon 16S digunakan untuk mengenal pasti komuniti bakteria M. plana. Selain itu, dua perbandingan telah dibuat, komuniti bakteria antara dua peringkat larva (peringkat instar awal dan peringkat instar lewat) dari kawasan wabak; komuniti bakteria larva peringkat instar lewat dari kawasan bukan wabak dan kawasan wabak. Daripada kajian ini, didapati komuniti bakteria M. plana terdiri daripada Proteobacteria, Actinobacteria, Bacterioidetes, Firmicutes dan filum kecil lain, dengan Proteobacteria merupakan filum yang paling dominan. Tambahan pula, genera bakteria M. plana terdiri daripada Pantoea, Curtobacterium, Pseudomonas, Massilia dan genera minor lain, dengan Pantoea yang paling dominan. Kajian ini juga mendapati bahawa kepelbagaian alfa dan beta dalam kedua-dua perbandingan adalah tidak jauh berbeza. Data ini dibentangkan sebagai pandangan pertama terhadap komuniti bakteria M. plana, membuka jalan ke arah memahami biologi bagworm M. plana.

3.
Data Brief ; 45: 108748, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426000

RESUMO

MicroRNAs (miRNAs) are short non-coding single-stranded RNAs with approximately 22 nucleotides in length that negatively regulate the mRNA translation of a target gene. MiR-2b-1 belongs to the largest miR-2 family in Drosophila melanogaster with 8 members and this miRNA family is conserved in invertebrates. miRNAs play key roles in gene regulation, cell proliferation, cell death, cell differentiation and cell developmental homeostasis in multicellular organisms. Its role in various human diseases is continuously being studied. miRNAs also found out to be crucial in maintaining stem cell niche in D. melanogaster gonads. We have identified that ectopic overexpression of miR-2b-1 of D. melanogaster causes testicular bulging (a tumour like phenotype) in 3-5 days old adult flies. Hence, we have performed a transcriptomic (RNA-seq) analysis to understand the role of miR-2b-1 in the development, maintenance, and differentiation of D. melanogaster adult testis stem cells. Data are available from GEO (accession number GSE211399).

4.
Histochem Cell Biol ; 158(6): 517-534, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35881195

RESUMO

CTP biosynthesis is carried out by two pathways: salvage and de novo. CTPsyn catalyzes the latter. The study of CTPsyn activity in mammalian cells began in the 1970s, and various fascinating discoveries were made regarding the role of CTPsyn in cancer and development. However, its ability to fit into a cellular serpent-like structure, termed 'cytoophidia,' was only discovered a decade ago by three independent groups of scientists. Although the self-assembly of CTPsyn into a filamentous structure is evolutionarily conserved, the enzyme activity upon this self-assembly varies in different species. CTPsyn is required for cellular development and homeostasis. Changes in the expression of CTPsyn cause developmental changes in Drosophila melanogaster. A high level of CTPsyn activity and formation of cytoophidia are often observed in rapidly proliferating cells such as in stem and cancer cells. Meanwhile, the deficiency of CTPsyn causes severe immunodeficiency leading to immunocompromised diseases caused by bacteria, viruses, and parasites, making CTPsyn an attractive therapeutic target. Here, we provide an overview of the role of CTPsyn in cellular and disease perspectives along with its potential as a drug target.


Assuntos
Drosophila melanogaster , Animais , Mamíferos
5.
Discov Oncol ; 13(1): 9, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201512

RESUMO

One of the many strategies that cancer cells evade death is through up-regulation of the BCL-2 anti-apoptotic proteins. Hence, these proteins have become attractive therapeutic targets. Given that different cell populations rely on different anti-apoptotic proteins for survival, it is crucial to determine which proteins are important for Nasopharyngeal carcinoma (NPC) cell survival. Here we determined the survival requirements for the NPC cells using a combination of the CRISPR/Cas9 technique and selective BH3-mimetics. A human apoptosis RT2 Profiler PCR Array was first employed to profile the anti-apoptotic gene expressions in NPC cell lines HK-1 and C666-1. The HK-1 cells expressed all the anti-apoptotic genes (MCL-1, BFL-1, BCL-2, BCL-XL, and BCL-w). Similarly, the C666-1 cells expressed all the anti-apoptotic genes except BFL-1 (undetectable level). Notably, both cell lines highly expressed MCL-1. Deletion of MCL-1 sensitized the NPC cells to BCL-XL selective inhibitor A-1331852, suggesting that MCL-1 and BCL-XL may be important for NPC cell survival. Co-inhibition of MCL-1 and BCL-2 with MCL-1 selective inhibitor S63845 and BCL-2 selective inhibitor ABT-199 inhibited NPC cell proliferation but the effect on cell viability was more profound with co-inhibition of MCL-1 and BCL-XL with S63845 and A-1331852, implying that MCL-1 and BCL-XL are crucial for NPC cell survival. Furthermore, co-inhibition of MCL-1 and BCL-XL inhibited the growth and invasion of NPC spheroids. Deletion of BFL-1 sensitized NPC cells to A-1331852 suggesting that BFL-1 may play a role in NPC cell survival. Taken together co-inhibition of BCL-XL and MCL-1/BFL-1 could be potential treatment strategies for NPC.

6.
Data Brief ; 38: 107413, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34632013

RESUMO

Ageing is defined as gradual decline of physiological, cellular and molecular state of an organism with time. The age-associated cell dysfunctions usually cause chronic diseases such as diabetes, cancers and other age-related diseases. Many of the genes and pathways involved in ageing are conserved in different species. These genes and pathways have been categorised into nine cellular and molecular hallmarks, namely, genomic instability, telomere attrition, loss of proteostasis, mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, stem cell exhaustion, cellular senescence and altered intercellular communication. Despite countless studies on ageing, the molecular mechanism of ageing is poorly understood. Here, we performed genome wide transcriptome mapping of ageing process in D. melanogaster. In which, transcriptomic analysis conducted on the 1 day and 60 days flies. Illumina Hiseq platform were used to generate raw data. Afterwards, further analysis including differential expression analysis, GO classification and KEGG pathway enrichment analysis were performed. The raw data were uploaded to SRA database and the BioProject ID is PRJNA718442. These data provide the basis for future research in order to discover the genes and pathways involved in ageing.

7.
Geriatr Gerontol Int ; 21(12): 1125-1130, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34699118

RESUMO

AIM: Alzheimer's disease (AD) is the most pervasive neurodegenerative disorder in societies globally. Till now, the mechanism behind this disease is still equivocal. Amyloid-beta42 protein (Aß42), the most toxic and aggressive Aß species, is the main focus of this study. The naturally occurring ethyl caffeate (EC) is associated with various medicinal properties. Here, EC was tested for its protective properties against Aß42's toxic effects. METHODS: As treatment of Aß42 has been shown to cause neuronal cell death, EC was first screened with Aß42-incubated PC12 neuronal cells. Next, the compound was tested on the Drosophila melanogaster AD model using the rough eye phenotype assay, lifespan assay and negative geotaxis assay. RESULTS: EC ameliorated PC12 cells from cell death linked to Aß42 exposure. Using Drosophila expressing human Aß42, feeding of EC was able to partially rescue the rough eye phenotype, lengthen the lifespan of AD Drosophila and enhanced the mobility of middle-aged AD Drosophila. CONCLUSION: Overall, the results of this study showed that EC might possess therapeutic properties for AD. Geriatr Gerontol Int 2021; 21: 1125-1130.


Assuntos
Doença de Alzheimer , Drosophila melanogaster , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Animais , Ácidos Cafeicos , Modelos Animais de Doenças , Células PC12 , Fragmentos de Peptídeos , Ratos
8.
J Ethnopharmacol ; 279: 114389, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34217797

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment. AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aß). Of all the Aß oligomers formed in the brain, Aß42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aß42's toxic effects. METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aß42 fibrillation using an in vitro activity assay. Since Aß42 aggregation results in neuronal degeneration, the potential Aß42 inhibitors were next evaluated on Aß42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB. RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aß42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aß42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aß42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila. CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzofuranos/farmacologia , Ácidos Cafeicos/farmacologia , Lactatos/farmacologia , Neurônios/efeitos dos fármacos , Fitoterapia , Salvia miltiorrhiza/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Drosophila melanogaster , Feminino , Células PC12 , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ratos
9.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824277

RESUMO

In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and ß-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.


Assuntos
Envelhecimento/metabolismo , Fígado Gorduroso/terapia , Hiperlipidemias/terapia , Probióticos/uso terapêutico , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Envelhecimento/patologia , Animais , Anticolesterolemiantes/farmacologia , Lactobacillus/patogenicidade , Metabolismo dos Lipídeos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Probióticos/administração & dosagem , Proteínas Quinases/genética , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Regulação para Cima
10.
Pharmacol Res ; 146: 104312, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31207344

RESUMO

Aging is closely associated with altered gut function and composition, in which elderly were reported with reduced gut microbiota diversity and increased incidence of age-related diseases. Probiotics have been shown to exert beneficial health-promoting effects through modulation of intestinal microflora biodiversity, thus the effects of probiotics administration on D-galactose (D-gal) senescence-induced rat were evaluated based on the changes in gut microbiota and metabolomic profiles. Upon senescence induction, the ratio of Firmicutes/ Bacteroidetes was significantly lowered, while treatment with Lactobacillus helveticus OFS 1515 and L. fermentum DR9 increased the ratio at the phylum level (P < 0.05). Study on the genus level showed that L. paracasei OFS 0291 and L. helveticus OFS 1515 administration reduced Bacteroides, which are prominently opportunistic pathogens while L. fermentum DR9 treated rats promoted the proliferation of Lactobacillus compared to the aged rats (P < 0.05). Probiotics treatment did not alter fecal short-chain fatty acid (SCFA) profile, but an increase in acetate was observed in the D-gal rats. The analysis of fecal water-soluble metabolites showed that D-gal induced senescence caused great impact on amino acids metabolism such as urocanic acid, citrulline, cystamine and 5-oxoproline, which could serve as potential aging biomarkers. Treatment with probiotics ameliorated these metabolites in a strain-specific manner, whereby L. fermentum DR9 promoted antioxidative effect through upregulation of oxoproline, whereas both L. paracasei OFS 0291 and L. helveticus OFS 1515 restored the levels of reducing sugars, arabinose and ribose similar to the young rats. D-gal induced senescence did cause significant immunological alteration in the colon of aged rats however, all probiotic strains demonstrated immunomodulatory properties as L. paracasei OFS 0291, L. helveticus OFS 1515 and L. fermentum DR9 alleviated proinflammatory cytokines TNF-α, IFN-γ and IL-1ß as well as IL-4 compared to the aged control (P < 0.05). Our study highlights the potential of probiotics as an anti-aging therapy through healthy gut modulation.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Microbioma Gastrointestinal/fisiologia , Lactobacillus/fisiologia , Microbiota/fisiologia , Animais , Colo/metabolismo , Colo/microbiologia , Citocinas/metabolismo , Fezes/microbiologia , Masculino , Modelos Animais , Probióticos/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Sci Rep ; 9(1): 6096, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988367

RESUMO

CTP synthase (CTPSyn) is an essential metabolic enzyme, synthesizing precursors required for nucleotides and phospholipids production. Previous studies have also shown that CTPSyn is elevated in various cancers. In many organisms, CTPSyn compartmentalizes into filaments called cytoophidia. In Drosophila melanogaster, only its isoform C (CTPSynIsoC) forms cytoophidia. In the fruit fly's testis, cytoophidia are normally seen in the transit amplification regions close to its apical tip, where the stem-cell niche is located, and development is at its most rapid. Here, we report that CTPSynIsoC overexpression causes the lengthening of cytoophidia throughout the entirety of the testicular body. A bulging apical tip is found in approximately 34% of males overexpressing CTPSynIsoC. Immunostaining shows that this bulged phenotype is most likely due to increased numbers of both germline cells and spermatocytes. Through a microRNA (miRNA) overexpression screen, we found that ectopic miR-975 concurrently increases both the expression levels of CTPSyn and the length of its cytoophidia. The bulging testes phenotype was also recovered at a penetration of approximately 20%. However, qPCR assays reveal that CTPSynIsoC and miR-975 overexpression each provokes a differential response in expression of a number of cancer-related genes, indicating that the shared CTPSyn upregulation seen in either case is likely the cause of observed testicular overgrowth. This study presents the first instance of consequences of miRNA-asserted regulation upon CTPSyn in D. melanogaster, and further reaffirms the enzyme's close ties to germline cells overgrowth.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citoesqueleto/metabolismo , Drosophila melanogaster/enzimologia , MicroRNAs/genética , Espermatócitos/citologia , Testículo/citologia , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/metabolismo , Isoenzimas/metabolismo , Masculino , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA