Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863656

RESUMO

Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.


Assuntos
Transtornos da Motilidade Ciliar , Doenças Renais Policísticas , Retinose Pigmentar , Feminino , Gravidez , Humanos , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Doenças Renais Policísticas/genética , Retinose Pigmentar/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo
2.
Elife ; 102021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702444

RESUMO

RNF43 is an E3 ubiquitin ligase and known negative regulator of WNT/ß-catenin signaling. We demonstrate that RNF43 is also a regulator of noncanonical WNT5A-induced signaling in human cells. Analysis of the RNF43 interactome using BioID and immunoprecipitation showed that RNF43 can interact with the core receptor complex components dedicated to the noncanonical Wnt pathway such as ROR1, ROR2, VANGL1, and VANGL2. RNF43 triggers VANGL2 ubiquitination and proteasomal degradation and clathrin-dependent internalization of ROR1 receptor and inhibits ROR2 activation. These activities of RNF43 are physiologically relevant and block pro-metastatic WNT5A signaling in melanoma. RNF43 inhibits responses to WNT5A, which results in the suppression of invasive properties of melanoma cells. Furthermore, RNF43 prevented WNT5A-assisted development of resistance to BRAF V600E and MEK inhibitors. Next, RNF43 acted as melanoma suppressor and improved response to targeted therapies in vivo. In line with these findings, RNF43 expression decreases during melanoma progression and RNF43-low patients have a worse prognosis. We conclude that RNF43 is a newly discovered negative regulator of WNT5A-mediated biological responses that desensitizes cells to WNT5A.


Assuntos
Melanoma , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Proteína Wnt-5a/genética , Animais , Masculino , Melanoma/genética , Melanoma/patologia , Melanoma/prevenção & controle , Camundongos , Camundongos Endogâmicos NOD , Invasividade Neoplásica/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Wnt-5a/metabolismo
3.
EMBO Mol Med ; 12(11): e11739, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200460

RESUMO

Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.


Assuntos
Síndrome de Ellis-Van Creveld , Quinase 2 de Receptor Acoplado a Proteína G/genética , Proteínas Hedgehog , Proteínas Hedgehog/genética , Humanos , Mutação , Via de Sinalização Wnt
4.
PLoS Comput Biol ; 15(12): e1007545, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31790384

RESUMO

In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Biologia Computacional , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais da Membrana/fisiologia , Condução Nervosa/fisiologia , Inibição Neural/fisiologia , Razão Sinal-Ruído , Transmissão Sináptica/fisiologia
5.
Stem Cells Int ; 2019: 4279481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805008

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand-TRAIL-is a protein operating as a ligand capable of inducing apoptosis particularly in cancerously transformed cells, while normal healthy cells are typically nonresponsive. We have previously demonstrated that pluripotent human embryonic stem cells (hESC) are also refractory to TRAIL, even though they express all canonical components of the death receptor-induced apoptosis pathway. In this study, we have examined a capacity of DNA damage to provoke sensitivity of hESC to TRAIL. The extent of DNA damage, behavior of molecules involved in apoptosis, and response of hESC to TRAIL were investigated. The exposure of hESC to 1 µM and 2 µM concentrations of cisplatin have led to the formation of 53BP1 and γH2AX foci, indicating the presence of double-strand breaks in DNA, without affecting the expression of proteins contributing to mitochondrial membrane integrity. Interestingly, cisplatin upregulated critical components of the extrinsic apoptotic pathway-initiator caspase 8, effector caspase 3, and the cell death receptors. The observed increase of expression of the extrinsic apoptotic pathway components was sufficient to sensitize hESC to TRAIL-induced apoptosis; immense cell dying accompanied by enhanced PARP cleavage, processing of caspase 8, and full activation of caspase 3 were all observed after the treatment combining cisplatin and TRAIL. Finally, we have demonstrated the central role of caspase 8 in this process, since its downregulation abrogated the sensitizing effect of cisplatin.

6.
Sci Transl Med ; 10(459)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232230

RESUMO

Studies have suggested a role for the mammalian (or mechanistic) target of rapamycin (mTOR) in skeletal development and homeostasis, yet there is no evidence connecting mTOR with the key signaling pathways that regulate skeletogenesis. We identified a parathyroid hormone (PTH)/PTH-related peptide (PTHrP)-salt-inducible kinase 3 (SIK3)-mTOR signaling cascade essential for skeletogenesis. While investigating a new skeletal dysplasia caused by a homozygous mutation in the catalytic domain of SIK3, we observed decreased activity of mTOR complex 1 (mTORC1) and mTORC2 due to accumulation of DEPTOR, a negative regulator of both mTOR complexes. This SIK3 syndrome shared skeletal features with Jansen metaphyseal chondrodysplasia (JMC), a disorder caused by constitutive activation of the PTH/PTHrP receptor. JMC-derived chondrocytes showed reduced SIK3 activity, elevated DEPTOR, and decreased mTORC1 and mTORC2 activity, indicating a common mechanism of disease. The data demonstrate that SIK3 is an essential positive regulator of mTOR signaling that functions by triggering DEPTOR degradation in response to PTH/PTHrP signaling during skeletogenesis.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Lâmina de Crescimento/metabolismo , Células HEK293 , Homozigoto , Humanos , Padrões de Herança/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto/genética , Proteínas Quinases/química , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteólise
7.
Stem Cell Reports ; 11(4): 959-972, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30197118

RESUMO

Centrioles account for centrosomes and cilia formation. Recently, a link between centrosomal components and human developmental disorders has been established. However, the exact mechanisms how centrosome abnormalities influence embryogenesis and cell fate are not understood. PLK4-STIL module represents a key element of centrosome duplication cycle. We analyzed consequences of inactivation of the module for early events of embryogenesis in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). We demonstrate that blocking of PLK4 or STIL functions leads to centrosome loss followed by both p53-dependent and -independent defects, including prolonged cell divisions, upregulation of p53, chromosome instability, and, importantly, reduction of pluripotency markers and induction of differentiation. We show that the observed loss of key stem cells properties is connected to alterations in mitotic timing and protein turnover. In sum, our data define a link between centrosome, its regulators, and the control of pluripotency and differentiation in PSCs.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proliferação de Células , Centrossomo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Mitose , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
8.
Stem Cells Dev ; 27(16): 1077-1084, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29882484

RESUMO

Chromosomal instability evoked by abnormalities in centrosome numbers has been traditionally considered as a hallmark of aberrant, typically cancerous or senescent cells. We have reported previously that pristine human embryonic stem cells (hESC) suffer from high frequency of supernumerary centrosomes and hence may be prone to undergo abnormal mitotic divisions. We have also unraveled that this phenomenon of multicentrosomal mitoses vanishes with prolonged time in culture and with initiation of differentiation, and it is strongly affected by the culture substratum. In this study, we report for the first time that Cripto-1 protein (teratocarcinoma-derived growth factor 1, epidermal growth factor-Cripto/FRL-1/Cryptic) produced by hESC represents a factor capable of inducing formation of supernumerary centrosomes in cultured hESC. Elimination of Cripto-1 signaling on the other hand restores the normal number of centrosomes in hESC. Linking the secretory phenotype of hESC to the centrosomal metabolism may help to develop better strategies for propagation of stable and safe bioindustrial and clinical grade cultures of hESC. From a broader point of view, it may lead to unravelling Cripto-1 as a micro-environmental factor contributing to adverse cell behaviors in vivo.


Assuntos
Centrossomo , Proteínas Ligadas por GPI/genética , Células-Tronco Embrionárias Humanas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mitose/genética , Proteínas de Neoplasias/genética , Diferenciação Celular/genética , Proteínas Ligadas por GPI/antagonistas & inibidores , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Transdução de Sinais/genética
9.
Cell Death Dis ; 9(2): 128, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374141

RESUMO

Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral pancytopenia. Severe aplastic anemia (SAA) is a subset of AA defined by a more severe phenotype. Although the immunological nature of SAA pathogenesis is widely accepted, there is an increasing recognition of the role of dysfunctional hematopoietic stem cells in the disease phenotype. While pediatric SAA can be attributable to genetic causes, evidence is evolving on previously unrecognized genetic etiologies in a proportion of adults with SAA. Thus, there is an urgent need to better understand the pathophysiology of SAA, which will help to inform the course of disease progression and treatment options. We have derived induced pluripotent stem cell (iPSC) from three unaffected controls and three SAA patients and have shown that this in vitro model mimics two key features of the disease: (1) the failure to maintain telomere length during the reprogramming process and hematopoietic differentiation resulting in SAA-iPSC and iPSC-derived-hematopoietic progenitors with shorter telomeres than controls; (2) the impaired ability of SAA-iPSC-derived hematopoietic progenitors to give rise to erythroid and myeloid cells. While apoptosis and DNA damage response to replicative stress is similar between the control and SAA-iPSC-derived-hematopoietic progenitors, the latter show impaired proliferation which was not restored by eltrombopag, a drug which has been shown to restore hematopoiesis in SAA patients. Together, our data highlight the utility of patient specific iPSC in providing a disease model for SAA and predicting patient responses to various treatment modalities.


Assuntos
Anemia Aplástica/patologia , Diferenciação Celular , Células-Tronco Hematopoéticas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Encurtamento do Telômero , Benzoatos/farmacologia , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pirazóis/farmacologia , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero/efeitos dos fármacos
10.
Stem Cells ; 36(1): 55-64, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047185

RESUMO

Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long-term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis-regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial-mesenchymal transition or metastasis (including miR-200b, miR-200c, miR-205, miR-148a, and miR-424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells 2018;36:55-64.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Regulação para Baixo , Humanos
11.
Stem Cells Dev ; 26(5): 328-340, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863459

RESUMO

HMGB1 and HMGB2 proteins have been implicated in numerous cellular processes, including proliferation, differentiation, apoptosis, and tumor growth. It is unknown whether they are involved in regulating the typical functions of pluripotent human embryonic stem cells (hESCs) and/or those of the differentiated derivatives of hESCs. Using inducible, stably transfected hESCs capable of shRNA-mediated knockdown of HMGB1 and HMGB2, we provide evidence that downregulation of HMGB1 and/or HMGB2 in undifferentiated hESCs does not affect the stemness of cells and induces only minor changes to the proliferation rate, cell-cycle profile, and apoptosis. After differentiation is induced, however, the downregulation of those proteins has important effects on proliferation, apoptosis, telomerase activity, and the efficiency of differentiation toward the neuroectodermal lineage. Furthermore, those processes are affected only when one, but not both, of the two proteins is downregulated; the knockdown of both HMGB1 and HMGB2 results in a normal phenotype. Those results advance our knowledge of regulation of hESC and human neuroectodermal cell differentiation and illustrate the distinct roles of HMGB1 and HMGB2 during early human development.


Assuntos
Diferenciação Celular , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Forma Celular/genética , Regulação para Baixo/genética , Humanos , Placa Neural/citologia , Telomerase/metabolismo , Transfecção
12.
Artigo em Inglês | MEDLINE | ID: mdl-25737734

RESUMO

Aims. In this work we studied cytodifferentiation effects of newly characterized prenyl flavonoid 4'-O-methylkuwanon E (4ME) isolated from white mulberry (Morus alba L.). Main Methods. Cell growth and viability were measured by dye exclusion assay; cell cycle and surface antigen CD11b were monitored by flow cytometry. For the cytodifferentiation of cells the NBT reduction assay was employed. Regulatory proteins were assessed by western blotting. Key Findings. 4ME induced dose-dependent growth inhibition of THP-1 cells, which was not accompanied by toxic effect. Inhibition of cells proliferation caused by 4ME was associated with the accumulation in G1 phase and with downregulation of hyperphosphorylated pRb. Treatment with 4ME led to significant induction of NBT-reducing activity of PMA stimulated THP-1 cells and upregulation expression of differentiation-associated surface antigen CD11b. Our results suggest that monocytic differentiation induced by 4ME is connected with up-regulation of p38 kinase activity. Significance. Our study provides the first evidence that 4ME induces the differentiation of THP-1 human monocytic leukemia cells and thus is a potential cytodifferentiating anticancer agent.

13.
Artigo em Inglês | MEDLINE | ID: mdl-23762124

RESUMO

Morus alba L. (MA) is a natural source of many compounds with different biological effects. It has been described to possess anti-inflammatory, antioxidant, and hepatoprotective activities. The aim of this study was to evaluate cytotoxicity of three flavonoids isolated from MA (kuwanon E, cudraflavone B, and 4'-O-methylkuwanon E) and to determine their effects on proliferation of THP-1 cells, and on cell cycle progression of cancer cells. Anti-inflammatory effects were also determined for all three given flavonoids. Methods used in the study included quantification of cells by hemocytometer and WST-1 assays, flow cytometry, western blotting, ELISA, and zymography. From the three compounds tested, cudraflavone B showed the strongest effects on cell cycle progression and viability of tumor and/or immortalized cells and also on inflammatory response of macrophage-like cells. Kuwanon E and 4'-O-methylkuwanon E exerted more sophisticated rather than direct toxic effect on used cell types. Our data indicate that mechanisms different from stress-related or apoptotic signaling pathways are involved in the action of these compounds. Although further studies are required to precisely define the mechanisms of MA flavonoid action in human cancer and macrophage-like cells, here we demonstrate their effects combining antiproliferative and anti-inflammatory activities, respectively.

14.
Stem Cells Dev ; 22(22): 2964-74, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23806100

RESUMO

Death ligands and their tumor necrosis factor receptor (TNFR) family receptors are the best-characterized and most efficient inducers of apoptotic signaling in somatic cells. In this study, we analyzed whether these prototypic activators of apoptosis are also expressed and able to be activated in human pluripotent stem cells. We examined human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC) and found that both cell types express primarily TNF-related apoptosis-inducing ligand (TRAIL) receptors and TNFR1, but very low levels of Fas/CD95. We also found that although hESC and hiPSC contain all the proteins required for efficient induction and progression of extrinsic apoptotic signaling, they are resistant to TRAIL-induced apoptosis. However, both hESC and hiPSC can be sensitized to TRAIL-induced apoptosis by co-treatment with protein synthesis inhibitors such as the anti-leukemia drug homoharringtonine (HHT). HHT treatment led to suppression of cellular FLICE inhibitory protein (cFLIP) and Mcl-1 expression and, in combination with TRAIL, enhanced processing of caspase-8 and full activation of caspase-3. cFLIP likely represents an important regulatory node, as its shRNA-mediated down-regulation significantly sensitized hESC to TRAIL-induced apoptosis. Thus, we provide the first evidence that, irrespective of their origin, human pluripotent stem cells express canonical components of the extrinsic apoptotic system and on stress can activate death receptor-mediated apoptosis.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/antagonistas & inibidores , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Diferenciação Celular , Proliferação de Células , Sinergismo Farmacológico , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica , Harringtoninas/farmacologia , Mepesuccinato de Omacetaxina , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Receptor fas/genética , Receptor fas/metabolismo
15.
Stem Cells ; 30(7): 1362-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22511267

RESUMO

Studies of human embryonic stem cells (hESCs) commonly describe the nonfunctional p53-p21 axis of the G1/S checkpoint pathway with subsequent relevance for cell cycle regulation and the DNA damage response (DDR). Importantly, p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this article, we provide evidence that expression of p21 protein is directly regulated by the microRNA (miRNA) pathway under standard culture conditions and after DNA damage. The DDR in hESCs leads to upregulation of tens of miRNAs, including hESC-specific miRNAs such as those of the miR-302 family, miR-371-372 family, or C19MC miRNA cluster. Most importantly, we show that the hESC-enriched miRNA family miR-302 (miR-302a, miR-302b, miR-302c, and miR-302d) directly contributes to regulation of p21 expression in hESCs and, thus, demonstrate a novel function for miR-302s in hESCS. The described mechanism elucidates the role of miRNAs in regulation of important molecular pathway governing the G1/S transition checkpoint before as well as after DNA damage.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Células-Tronco Embrionárias/metabolismo , MicroRNAs/genética , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Marcação In Situ das Extremidades Cortadas , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Stem Cells ; 29(1): 46-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20960514

RESUMO

Propagation of human embryonic stem cells (hESCs) in culture tends to alter karyotype, potentially limiting the prospective use of these cells in patients. The chromosomal instability of some malignancies is considered to be driven, at least in part, by centrosomal overamplification, perturbing balanced chromosome segregation. Here, we report, for the first time, that very high percentage of cultured hESCs has supernumerary centrosomes during mitosis. Supernumerary centrosomes were strictly associated with an undifferentiated hESC state and progressively disappeared on prolonged propagation in culture. Improved attachment to culture substratum and inhibition of CDK2 and Aurora A (key regulators of centrosomal metabolism) diminished the frequency of multicentrosomal mitoses. Thus, both attenuated cell attachment and deregulation of machinery controlling centrosome number contribute to centrosomal overamplification in hESCs. Linking the excessive number of centrosomes in mitoses to the ploidy indicated that both overduplication within a single cell cycle and mitotic failure contributed to generation of numerical centrosomal abnormalities in hESCs. Collectively, our data indicate that supernumerary centrosomes are a significant risk factor for chromosome instability in cultured hESCs and should be evaluated when new culture conditions are being implemented.


Assuntos
Centrossomo/metabolismo , Instabilidade Cromossômica , Células-Tronco Embrionárias/patologia , Aneuploidia , Aurora Quinases , Diferenciação Celular , Linhagem Celular , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Mitose , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
17.
Br J Pharmacol ; 162(7): 1534-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21175584

RESUMO

BACKGROUND AND PURPOSE: Paulownia tomentosa is a rich source of geranylated flavanones, some of which we have previously shown to have cytotoxic activity. To identify members of this class of compounds with cytostatic effects, we assessed the effects of the geranylated flavanone tomentodiplacone B (TOM B) on cell cycle progression and cell cycle regulatory pathways of THP-1 human monocytic leukaemia cells. EXPERIMENTAL APPROACH: Cell viability was measured by dye exclusion and proliferation by WST-1 assays; cell cycle was monitored by flow cytometry. Regulatory proteins were assessed by immunoprecipitation and kinase assays, and Western blotting. KEY RESULTS: Tomentodiplacone B had no effect during the first 24 h of cell growth at concentrations between 1 and 2.5 µM, but inhibited cell growth in a dose-dependent manner at concentrations of 5 µM or higher. Growth inhibition during the first 24 h of exposure to TOM B was not accompanied by cytotoxicity as cells were accumulated in G1 phase dose-dependently. This G1 phase accumulation was associated with down-regulation of cyclin-dependent kinase 2 activity and also protein levels of cyclins E1 and A2. However, key stress-related molecules (γ-H2AX, p53 and p21) were not induced, suggesting that TOM B acts by directly inhibiting the cyclin-dependent kinase 2 signalling pathway rather than initiating DNA damage or cellular stress. CONCLUSIONS AND IMPLICATIONS: Our study provides the first evidence that TOM B directly inhibits proliferation of human monocytic leukaemia cells, and thus is a potential anticancer agent, preventing leukaemia cells from progressing from G1 phase into DNA synthesis.


Assuntos
Flavanonas/farmacologia , Monócitos/efeitos dos fármacos , Monoterpenos/farmacologia , Anticarcinógenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/biossíntese , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Leucemia Monocítica Aguda , Monócitos/citologia , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA