Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Oncol ; 63: 433-440, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881341

RESUMO

Recent developments in molecular genetic testing methods (e.g. next-generation sequencing [NGS]-panels) largely accelerated the process of finding the most appropriate targeted therapeutic intervention for cancer patients based on molecularly targetable genetic alterations. In Hungary, a centralized approval system following the recommendation of the National Molecular Tumor Board was launched for the coordination of all aspects of comprehensive genetic profiling (CGP) including patient selection and therapy reimbursement. AIM: The study aims to evaluate the clinical benefit of CGP in our Comprehensive Cancer Center Methods and patients: CGP was introduced into our routine clinical practice in 2021. An NGS-based large (> 500 genes) gene panel was used for cases where molecular genetic testing was approved by the National Molecular Tumor Board. From 2021 until August 2023 163 cases were tested. The majority of them were ECOG 0-1 patients with advanced-stage diseases, histologically rare cancer, or cancers with unknown primary tumours. RESULTS: Seventy-four cases (74 of 163, 45%) had clinically relevant genetic alterations. In 34 patients, the identified variants represented an indication for an approved therapy (approved by the Hungarian authorities, on-label indication), while in 40 cases the recommended therapy did not have an approved indication in Hungary for certain tumour types, but off-label indication could be recommended. Based on our CGP results, 24 patients (24/163; 14.7%) received targeted therapy. Treatment duration was between 1 and 60 months. In total 14 (14/163; 8.5% of the tested cases) patients had a positive clinical response (objective response or stable disease) and were treated for more than 16 weeks. INTERPRETATION: NGS-based CGP was successfully introduced in our institution and a significant number of patients benefited from comprehensive genetic tests. Our preliminary results can serve as the starting point of Drug Rediscovery Protocol (DRUP) studies.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Medicina de Precisão , Humanos , Hungria , Medicina de Precisão/métodos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pessoa de Meia-Idade , Idoso , Adulto , Testes Genéticos/métodos , Idoso de 80 Anos ou mais , Adulto Jovem , Adolescente , Terapia de Alvo Molecular/métodos , Biomarcadores Tumorais/genética
2.
Pathol Oncol Res ; 28: 1610607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277960

RESUMO

EGFR mutation in non-small cell lung cancer (NSCLC) offers a potential therapeutic target for tyrosine kinase inhibitor (TKI) therapy. The majority of these cases, however eventually develop therapy resistance, mainly by acquiring EGFR T790M mutation. Recently, third-generation TKIs have been introduced to overcome T790M mutation-related resistance. Cell free circulating tumor DNA (liquid biopsy) has emerged as a valuable alternative method for T790M mutation detection during patient follow up, when a tissue biopsy cannot be obtained for analysis. In this study, we summarized our experience with Super-ARMS EGFR Mutation Detection Kit (AmoyDx) on 401 samples of 242 NSCLC patients in a 3-year period in Hungary, comprising 364 plasma and 37 non-plasma samples. We also compared the performance of two commercially available detection kits, the cobas EGFR Mutation test v2 (Roche) and the Super-ARMS EGFR Mutation Detection Kit (AmoyDx). The same activating EGFR mutation was detected with the AmoyDx kit as in the primary tumor in 45.6% of the samples. T790M mutation was identified in 48.1% of the samples containing activating EGFR mutation. The detection rate of T790M mutation was not dependent on the DNA concentration of the plasma sample and there was no considerable improvement in mutation detection rate after a second, subsequent plasma sample. The concordance of EGFR activating mutation detection was 89% between the two methods, while this was 93% for T790M mutation detection. The AmoyDx kit, however showed an overall higher detection rate of T790M mutation compared to the cobas kit (p = 0.014). T790M mutation was detected at 29.8% of the patients if only plasma samples were available for analysis, while the detection rate was 70.2% in non-plasma samples. If the activating EGFR was detected in the plasma samples, the detection rate of T790M mutation was 42.4%. Although non-plasma samples provided a superior T790M mutation detection rate, we found that liquid biopsy can offer a valuable tool for T790M mutation detection, when a tissue biopsy is not available. Alternatively, a liquid biopsy can be used as a screening test, when re-biopsy should be considered in case of wild-type results.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , DNA Tumoral Circulante/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA