Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2316579120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048456

RESUMO

The gut microbiota plays a role in many human diseases, but high-throughput sequence analysis does not provide a straightforward path for defining healthy microbial communities. Therefore, understanding mechanisms that drive compositional changes during disease (gut dysbiosis) continues to be a central goal in microbiome research. Insights from the microbial pathogenesis field show that an ecological cause for gut dysbiosis is an increased availability of host-derived respiratory electron acceptors, which are dominant drivers of microbial community composition. Similar changes in the host environment also drive gut dysbiosis in several chronic human illnesses, and a better understanding of the underlying mechanisms informs approaches to causatively link compositional changes in the gut microbiota to an exacerbation of symptoms. The emerging picture suggests that homeostasis is maintained by host functions that control the availability of resources governing microbial growth. Defining dysbiosis as a weakening of these host functions directs attention to the underlying cause and identifies potential targets for therapeutic intervention.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose
2.
bioRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131682

RESUMO

Antibiotic prophylaxis sets the stage for an intestinal bloom of Candida albicans , which can progress to invasive candidiasis in patients with hematologic malignancies. Commensal bacteria can reestablish microbiota-mediated colonization resistance after completion of antibiotic therapy, but they cannot engraft during antibiotic prophylaxis. Here we use a mouse model to provide a proof of concept for an alternative approach, which replaces commensal bacteria functionally with drugs to restore colonization resistance against C. albicans . Streptomycin treatment, which depletes Clostridia from the gut microbiota, disrupted colonization resistance against C. albicans and increased epithelial oxygenation in the large intestine. Inoculating mice with a defined community of commensal Clostridia species reestablished colonization resistance and restored epithelial hypoxia. Notably, these functions of commensal Clostridia species could be replaced functionally with the drug 5-aminosalicylic acid (5-ASA), which activates mitochondrial oxygen consumption in the epithelium of the large intestine. When streptomycin-treated mice received 5-ASA, the drug reestablished colonization resistance against C. albicans and restored physiological hypoxia in the epithelium of the large intestine. We conclude that 5-ASA treatment is a non-biotic intervention that restores colonization resistance against C. albicans without requiring the administration of live bacteria.

3.
mBio ; 13(6): e0273322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286551

RESUMO

Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Polissacarídeos Bacterianos/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose , Macrófagos/metabolismo
4.
Cell Rep ; 37(8): 110016, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818535

RESUMO

Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show that one gut microbiota member in the genus Duncaniella confers host protection from DSS-induced injury. We identify Dusp6 deficiency as beneficial for shaping the gut microbiota eubiosis necessary to protect against gut barrier-related diseases.


Assuntos
Colite/microbiologia , Fosfatase 6 de Especificidade Dupla/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Células CACO-2 , Colite/prevenção & controle , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Fosfatase 6 de Especificidade Dupla/deficiência , Fosfatase 6 de Especificidade Dupla/genética , Disbiose/metabolismo , Células Epiteliais/metabolismo , Fezes , Feminino , Humanos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Ribossômico 16S/metabolismo
5.
Science ; 373(6556): 813-818, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385401

RESUMO

A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.


Assuntos
Colo/fisiologia , Dieta Hiperlipídica , Escherichia coli/metabolismo , Mucosa Intestinal/fisiologia , Metilaminas/metabolismo , Animais , Hipóxia Celular , Colina/administração & dosagem , Colina/metabolismo , Colo/citologia , Metabolismo Energético , Células Epiteliais/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Inflamação , Mucosa Intestinal/metabolismo , Masculino , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nitratos/metabolismo , Obesidade , Consumo de Oxigênio
6.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575772

RESUMO

Intestinal inflammation is a risk factor for colorectal cancer formation, but the underlying mechanisms remain unknown. Here, we investigated whether colitis alters the colonic microbiota to enhance its cancer-inducing activity. Colitis increased epithelial oxygenation in the colon of mice and drove an expansion of Escherichia coli within the gut-associated microbial community through aerobic respiration. An aerobic expansion of colibactin-producing E. coli was required for the cancer-inducing activity of this pathobiont in a mouse model of colitis-associated colorectal cancer formation. We conclude that increased epithelial oxygenation in the colon is associated with an expansion of a prooncogenic driver species, thereby increasing the cancer-inducing activity of the microbiota.IMPORTANCE One of the environmental factors important for colorectal cancer formation is the gut microbiota, but the habitat filters that control its cancer-inducing activity remain unknown. Here, we show that chemically induced colitis elevates epithelial oxygenation in the colon, thereby driving an expansion of colibactin-producing Escherichia coli, a prooncogenic driver species. These data suggest that elevated epithelial oxygenation is a potential risk factor for colorectal cancer formation because the consequent changes in the gut habitat escalate the cancer-inducing activity of the microbiota.


Assuntos
Carcinogênese , Colite/microbiologia , Neoplasias Colorretais/microbiologia , Infecções por Escherichia coli/complicações , Microbioma Gastrointestinal , Oxigênio/metabolismo , Aerobiose , Animais , Colite/induzido quimicamente , Colite/complicações , Sulfato de Dextrana , Escherichia coli , Infecções por Escherichia coli/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Policetídeos/metabolismo
7.
Mucosal Immunol ; 11(5): 1299-1305, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743614

RESUMO

A balanced gut microbiota is important for human health, but the mechanisms that maintain homeostasis are incompletely understood. Recent insights suggest the host plays a key role in shaping its gut microbiota to be beneficial. While host control in the small intestine curbs bacterial numbers to avoid competition for simple sugars and amino acids, the host limits oxygen availability in the large intestine to obtain microbial fermentation products from fiber. Epithelial cells are major players in imposing ecological control mechanisms, which involves the release of antimicrobial peptides by small-intestinal Paneth cells and maintenance of luminal anaerobiosis by epithelial hypoxia in the colon. Harnessing these epithelial control mechanisms for therapeutic means could provide a novel lynchpin for strategies to remediate dysbiosis.


Assuntos
Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Microbiota/imunologia , Animais , Ecologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Homeostase/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestinos/imunologia , Intestinos/microbiologia
8.
Cell Host Microbe ; 23(2): 266-273.e4, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29447698

RESUMO

Salmonella enterica serovar (S.) Typhi is an extraintestinal pathogen that evolved from Salmonella serovars causing gastrointestinal disease. Compared with non-typhoidal Salmonella serovars, the genomes of typhoidal serovars contain various loss-of-function mutations. However, the contribution of these genetic differences to this shift in pathogen ecology remains unknown. We show that the ydiQRSTD operon, which is deleted in S. Typhi, enables S. Typhimurium to utilize microbiota-derived butyrate during gastrointestinal disease. Unexpectedly, genetic ablation of butyrate utilization reduces S. Typhimurium epithelial invasion and attenuates intestinal inflammation. Deletion of ydiD renders S. Typhimurium sensitive to butyrate-mediated repression of invasion gene expression. Combined with the gain of virulence-associated (Vi) capsular polysaccharide and loss of very-long O-antigen chains, two features characteristic of S. Typhi, genetic ablation of butyrate utilization abrogates S. Typhimurium-induced intestinal inflammation. Thus, the transition from a gastrointestinal to an extraintestinal pathogen involved discrete genetic changes, providing insights into pathogen evolution and emergence.


Assuntos
Butiratos/metabolismo , Colite/patologia , Intoxicação Alimentar por Salmonella/patologia , Salmonella typhi/genética , Salmonella typhimurium/genética , Animais , Linhagem Celular Tumoral , Clostridium/isolamento & purificação , Clostridium/patogenicidade , Colite/microbiologia , Escherichia coli , Feminino , Humanos , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos CBA , Intoxicação Alimentar por Salmonella/microbiologia , Salmonella typhi/patogenicidade , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III/genética
9.
Science ; 357(6351): 570-575, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28798125

RESUMO

Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward ß-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.


Assuntos
Disbiose/metabolismo , Disbiose/microbiologia , Enterobacteriaceae/patogenicidade , Microbioma Gastrointestinal , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR gama/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Anilidas/farmacologia , Animais , Antibacterianos/farmacologia , Butiratos/metabolismo , Células CACO-2 , Clostridium/efeitos dos fármacos , Clostridium/metabolismo , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Disbiose/induzido quimicamente , Disbiose/genética , Enterobacteriaceae/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Expressão Gênica , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Oxirredução , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Transdução de Sinais , Estreptomicina/farmacologia
10.
Int J Med Microbiol ; 306(8): 604-610, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27760693

RESUMO

Salmonella enterica serotype Typhimurium is able to expand in the lumen of the inflamed intestine through mechanisms that have not been fully resolved. Here we utilized streptomycin-pretreated mice and dextran sodium sulfate (DSS)-treated mice to investigate how pathways for S. Typhimurium iron acquisition contribute to pathogen expansion in the inflamed intestine. Competitive infection with an iron uptake-proficient S. Typhimurium strain and mutant strains lacking tonB feoB, feoB, tonB or iroN in streptomycin pretreated mice demonstrated that ferric iron uptake requiring IroN and TonB conferred a fitness advantage during growth in the inflamed intestine. However, the fitness advantage conferred by ferrous iron uptake mechanisms was independent of inflammation and was only apparent in models where the normal microbiota composition had been disrupted by antibiotic treatment.


Assuntos
Gastroenterite/microbiologia , Intestinos/microbiologia , Ferro/metabolismo , Redes e Vias Metabólicas/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
mBio ; 7(4)2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27435462

RESUMO

UNLABELLED: Salmonella enterica serovar Typhimurium can cross the epithelial barrier using either the invasion-associated type III secretion system (T3SS-1) or a T3SS-1-independent mechanism that remains poorly characterized. Here we show that flagellum-mediated motility supported a T3SS-1-independent pathway for entering ileal Peyer's patches in the mouse model. Flagellum-dependent invasion of Peyer's patches required energy taxis toward nitrate, which was mediated by the methyl-accepting chemotaxis protein (MCP) Tsr. Generation of nitrate in the intestinal lumen required inducible nitric oxide synthase (iNOS), which was synthesized constitutively in the mucosa of the terminal ileum but not in the jejunum, duodenum, or cecum. Tsr-mediated invasion of ileal Peyer's patches was abrogated in mice deficient for Nos2, the gene encoding iNOS. We conclude that Tsr-mediated energy taxis enables S Typhimurium to migrate toward the intestinal epithelium by sensing host-derived nitrate, thereby contributing to invasion of Peyer's patches. IMPORTANCE: Nontyphoidal Salmonella serovars, such as S. enterica serovar Typhimurium, are a common cause of gastroenteritis in immunocompetent individuals but can also cause bacteremia in immunocompromised individuals. While the invasion-associated type III secretion system (T3SS-1) is important for entry, S Typhimurium strains lacking a functional T3SS-1 can still cross the intestinal epithelium and cause a disseminated lethal infection in mice. Here we observed that flagellum-mediated motility and chemotaxis contributed to a T3SS-1-independent pathway for invasion and systemic dissemination to the spleen. This pathway required the methyl-accepting chemotaxis protein (MCP) Tsr and energy taxis toward host-derived nitrate, which we found to be generated by inducible nitric oxide synthase (iNOS) in the ileal mucosa prior to infection. Collectively, our data suggest that S Typhimurium enhances invasion by actively migrating toward the intestinal epithelium along a gradient of host-derived nitrate emanating from the mucosal surface of the ileum.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Endocitose , Células Epiteliais/microbiologia , Proteínas de Membrana/metabolismo , Nitratos/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Animais , Ceco/enzimologia , Modelos Animais de Doenças , Metabolismo Energético , Flagelos/fisiologia , Ilhas Genômicas , Intestino Delgado/enzimologia , Locomoção , Camundongos , Óxido Nítrico Sintase Tipo II/análise , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiologia
12.
Nature ; 532(7599): 394-7, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27007849

RESUMO

Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1α. Once activated, IRE1α recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-κB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Transdução de Sinais , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/imunologia , Brucella abortus/patogenicidade , Linhagem Celular , Ditiotreitol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/antagonistas & inibidores , Feminino , Humanos , Imunidade Inata , Inflamação/induzido quimicamente , Interleucina-6/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
13.
Infect Immun ; 83(4): 1546-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644011

RESUMO

To discern virulent from innocuous microbes, the innate immune system senses events associated with bacterial access to immunoprivileged sites such as the host cell cytosol. One such pathway is triggered by the cytosolic delivery of flagellin, the major subunit of the flagellum, by bacterial secretion systems. This leads to inflammasome activation and subsequent proinflammatory cell death (pyroptosis) of the infected phagocyte. In this study, we demonstrate that the causative agent of typhoid fever, Salmonella enterica serovar Typhi, can partially subvert this critical innate immune recognition event. The transcriptional regulator TviA, which is absent from Salmonella serovars associated with human gastroenteritis, repressed the expression of flagellin during infection of human macrophage-like (THP-1) cells. This mechanism allowed S. Typhi to dampen inflammasome activation, leading to reduced interleukin-1ß (IL-1ß) secretion and diminished cell death. Likewise, the introduction of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagellin-induced pyroptosis. These data suggest that gene regulation of virulence factors enables S. Typhi to evade innate immune recognition by concealing a pathogen-induced process from being sensed by the inflammasome.


Assuntos
Apoptose/genética , Proteínas de Bactérias/imunologia , Flagelina/biossíntese , Macrófagos/imunologia , Salmonella typhi/patogenicidade , Fatores de Transcrição/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Proteínas de Ligação ao Cálcio/imunologia , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Humanos , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhi/genética , Salmonella typhi/imunologia , Fatores de Transcrição/genética , Fatores de Virulência/genética
14.
J Vis Exp ; (90): e51759, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25146526

RESUMO

Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Macrófagos/microbiologia , Salmonella typhimurium/fisiologia , Animais , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno , Camundongos , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento
16.
mBio ; 5(1): e00946-13, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24496791

RESUMO

UNLABELLED: To establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogen Salmonella enterica serovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells, S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolic S. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen. IMPORTANCE: The pathogenic bacterium Salmonella enterica serovar Typhimurium invades and persists within host cells using distinct sets of virulence genes. Genes from Salmonella pathogenicity island 1 (SPI-1) are used to initiate contact and facilitate uptake into nonphagocytic host cells, while genes within SPI-2 allow the pathogen to colonize host cells. While many studies have identified bacterial virulence determinants in animal models of infection, very few have focused on virulence gene expression at the single-cell level during an in vivo infection. To better understand when and where bacterial virulence factors are expressed during an acute enteric infection of a natural host, we infected bovine jejunal-ileal loops with S. Typhimurium cells harboring fluorescent transcriptional reporters for SPI-1 and -2 (PinvF and PssaG, respectively). After a prescribed time of infection, tissue and luminal fluid were collected and analyzed by microscopy. During early infection (≤2 h), bacteria within both intact and compromised membrane-bound vacuoles were observed within the epithelium, with the majority expressing SPI-1. As the infection progressed, S. Typhimurium displayed differential expression of the SPI-1 and SPI-2 regulons, with the majority of tissue-associated bacteria expressing SPI-2 and the majority of lumen-associated bacteria expressing SPI-1. This underscores the finding that Salmonella virulence gene expression changes as the pathogen transitions from one anatomical location to the next.


Assuntos
Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Fatores de Virulência/biossíntese , Animais , Sistemas de Secreção Bacterianos , Bovinos , Modelos Animais de Doenças , Enterócitos/microbiologia , Células Epiteliais/microbiologia , Mucosa/microbiologia , Fatores de Tempo
17.
Cell Host Microbe ; 14(2): 159-70, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23954155

RESUMO

Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection.


Assuntos
Brucella abortus/fisiologia , Glucose/metabolismo , Ativação de Macrófagos , Macrófagos/microbiologia , Viabilidade Microbiana , PPAR gama/metabolismo , Animais , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/imunologia , Brucella abortus/metabolismo , Macrófagos/imunologia , Camundongos
18.
PLoS Pathog ; 9(6): e1003454, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818855

RESUMO

Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4(+)CD25(+) T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25(+)CD4(+) T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-10/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Viabilidade Microbiana/imunologia , Viabilidade Microbiana/efeitos da radiação , Animais , Brucelose/genética , Brucelose/patologia , Linfócitos T CD4-Positivos/patologia , Linhagem Celular , Interleucina-10/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia
19.
Science ; 337(6093): 477-81, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22722251

RESUMO

Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.


Assuntos
Imunidade Inata , Imunidade nas Mucosas , Intestino Delgado/imunologia , alfa-Defensinas/química , alfa-Defensinas/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Intestino Delgado/microbiologia , Intestino Delgado/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/imunologia , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Modelos Moleculares , Nanoestruturas , Celulas de Paneth/imunologia , Celulas de Paneth/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/ultraestrutura , Yersinia enterocolitica/imunologia , Yersinia enterocolitica/patogenicidade , alfa-Defensinas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
20.
Infect Immun ; 79(2): 830-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21098104

RESUMO

Capsular polysaccharides are important virulence factors of invasive bacterial pathogens. Here we studied the role of the virulence (Vi) capsular polysaccharide of Salmonella enterica serotype Typhi (S. Typhi) in preventing innate immune recognition by complement. Comparison of capsulated S. Typhi with a noncapsulated mutant (ΔtviBCDE vexABCDE mutant) revealed that the Vi capsule interfered with complement component 3 (C3) deposition. Decreased complement fixation resulted in reduced bacterial binding to complement receptor 3 (CR3) on the surface of murine macrophages in vitro and decreased CR3-dependent clearance of Vi capsulated S. Typhi from the livers and spleens of mice. Opsonization of bacteria with immune serum prior to intraperitoneal infection increased clearance of capsulated S. Typhi from the liver. Our data suggest that the Vi capsule prevents CR3-dependent clearance, which can be overcome in part by a specific antibody response.


Assuntos
Complemento C3/metabolismo , Polissacarídeos Bacterianos/metabolismo , Receptores de Complemento/metabolismo , Salmonelose Animal/imunologia , Salmonella typhi/fisiologia , Animais , Configuração de Carboidratos , Regulação Bacteriana da Expressão Gênica , Imunoglobulina G/metabolismo , Lipopolissacarídeos/química , Fígado/microbiologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Antígenos O/química , Polissacarídeos Bacterianos/genética , Ligação Proteica , Salmonella typhi/genética , Salmonella typhi/metabolismo , Baço/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA