RESUMO
BACKGROUND/AIM: For patients with local gastrointestinal stromal tumor (GIST), risk stratification is used to assess the prognosis and identify patients to offer adjuvant treatment. For patients with advanced or metastatic GIST, no such risk stratification exists. This study aimed to investigate the prognostic value of 31 different plasma small extracellular vesicles' (SEVs) surface proteins in GIST patients. MATERIALS AND METHODS: GIST patients from the two sarcoma centers in Denmark were included. Patients were divided into three groups; group 1: patients undergoing radical surgery; group 2: patients with local, locally advanced, or metastatic GIST; and group 3: patients without evidence of disease after radical surgery. Protein microarray technology was used for the analysis of plasma SEVs. The median plasma SEV marker level was used when comparing groups of patients. The primary endpoint was the progression of GIST. Iterative statistical modeling was used to identify a SEV marker profile/model with a prognostic value. RESULTS: A total of 157 patients were included, with a median follow-up time of 2.05 years. In group 2, a high level of carcinoembryonic antigen (CEA) and a low level of glucose transporter 1 (GLUT-1) were found to be poor prognostic factors [univariate analysis; GLUT-1: hazard ratio (HR)=0.47, 95% confidence interval (CI)=0.22-0.98; CEA: HR=2.12, 95%CI=1.02-4.44]. Composing a model consisting of CEA and GLUT-1 adjusted for age at inclusion was found to have a prognostic value (HR=4.93, 95%CI=2.30-10.57, p<0.0001). CONCLUSION: Plasma SEVs in GIST showed that CEA and GLUT-1 might be of prognostic value. However, external validation is needed.
Assuntos
Vesículas Extracelulares , Tumores do Estroma Gastrointestinal , Segunda Neoplasia Primária , Humanos , Prognóstico , Antígeno Carcinoembrionário , FenótipoRESUMO
Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are inflammatory diseases with unresolved pathophysiological aspects. Extracellular vesicles (EVs) play an important role in intercellular communication. We compared the miRNA contents and surface proteome of the EVs in the blood serum of PsV and PsA patients to healthy controls. Size-exclusion chromatography was used to isolate EVs from the blood serum of 12 PsV patients, 12 PsA patients and 12 healthy control subjects. EV samples were characterized and RNA sequencing was used to identify differentially enriched EV-bound miRNAs. We found 212 differentially enriched EV-bound miRNAs present in both PsV and PsA groups-a total of 13 miRNAs at FDR ≤ 0.05. The predicted target genes of these miRNAs were significantly related to lesser known but potentially disease-relevant pathways. The EV array revealed that PsV patient EV samples were significantly enriched with CD9 EV-marker compared to controls. Analysis of EV-bound miRNAs suggests that signaling via EVs in the blood serum could play a role in the pathophysiological processes of PsV and PsA. EVs may be able to fill the void in clinically applicable diagnostic and prognostic biomarkers for PsV and PsA.
Assuntos
Artrite Psoriásica , Vesículas Extracelulares , MicroRNAs , Psoríase , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/genética , Biomarcadores , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Psoríase/genética , Soro/metabolismoRESUMO
Extracellular vesicles (EVs) are membrane-bound biological nanoparticles (NPs) and have gained wide attention as potential biomarkers. We aimed to isolate and characterize EVs from media conditioned by individually cultured preimplantation bovine embryos and to assess their relationship with embryo quality. Presumptive zygotes were cultured individually in 60 µl droplets of culture media, and 50 µl of media were collected from the droplets either on day 2, 5 or 8 post-fertilization. After sampling, the embryo cultures were continued in the remaining media until day 8, and the embryo development was evaluated at day 2 (cleavage), day 5 (morula stage) and day 8 (blastocyst stage). EVs were isolated using qEVsingle® columns and characterized. Based on EV Array, EVs isolated from embryo conditioned media were strongly positive for EV-markers CD9 and CD81 and weakly positive for CD63 and Alix among others. They had a cup-like shape typical to EVs as analyzed by transmission electron microscopy and spherical shape in scanning electron microscopy, and hence regarded as EVs. However, the NPs isolated from control media were negative for EV markers. Based on nanoparticle tracking analysis, at day 2, the mean concentration of EVs isolated from media conditioned by embryos that degenerated after cleaving (8.25 × 108/ml) was higher compared to that of embryos that prospectively developed to blastocysts (5.86 × 108/ml, p < 0.05). Moreover, at day 8, the concentration of EVs isolated from media conditioned by degenerating embryos (7.17 × 108/ml) was higher compared to that of blastocysts (5.68 × 108/ml, p < 0.05). Furthermore, at day 8, the mean diameter of EVs isolated from media conditioned by degenerating embryos (153.7 nm) was smaller than EVs from media conditioned by blastocysts (163.5 nm, p < 0.05). In conclusion, individually cultured preimplantation bovine embryos secrete EVs in the culture media and their concentration and size are influenced by embryo quality and may indicate their prospective development potential.
Assuntos
Bovinos/embriologia , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos/fisiologia , Embrião de Mamíferos/ultraestrutura , Vesículas Extracelulares/fisiologia , Animais , Biomarcadores/análise , Blastocisto/fisiologia , Blastocisto/ultraestrutura , Meios de Cultivo Condicionados , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/fisiologia , Vesículas Extracelulares/química , Fertilização in vitro/veterinária , Tetraspanina 28/análise , Tetraspanina 29/análiseRESUMO
BACKGROUND: Community-acquired pneumonia (CAP) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) represent a major burden of disease and death and their differential diagnosis is critical. A potential source of relevant accessible biomarkers are blood-borne small extracellular vesicles (sEVs). METHODS: We performed an extracellular vesicle array to find proteins on plasma sEVs that are differentially expressed and possibly allow the differential diagnosis between CAP and AECOPD. Plasma samples were analyzed from 21 healthy controls, 24 patients with CAP, and 10 with AECOPD . The array contained 40 antibodies to capture sEVs, which were then visualized with a cocktail of biotin-conjugated CD9, CD63, and CD81 antibodies. RESULTS: We detected significant differences in the protein decoration of sEVs between healthy controls and patients with CAP or AECOPD. We found CD45 and CD28 to be the best discrimination markers between CAP and AECOPD in receiver operating characteristic analyses, with an area under the curve >0.92. Additional ensemble feature selection revealed the possibility to distinguish between CAP and AECOPD even if the patient with CAP had COPD, with a panel of CD45, CD28, CTLA4 (cytotoxic T-lymphocyte-associated protein 4), tumor necrosis factor-R-II, and CD16. CONCLUSION: The discrimination of sEV-associated proteins is a minimally invasive method with potential to discriminate between CAP and AECOPD.
Assuntos
Vesículas Extracelulares/metabolismo , Pneumonia/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Diagnóstico Diferencial , Progressão da Doença , Humanos , Pneumonia/diagnóstico , Proteoma/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnósticoRESUMO
BACKGROUND: The risk of thrombus formation in the left atrial appendage (LAA) in patients with atrial fibrillation (AF) may result from blood stasis, local endocardial changes, and/or changed blood composition. Extracellular vesicles (EVs), especially subtypes exposing tissue factor (TF), have procoagulant capacity. We hypothesized that blood concentrations of TF-bearing EVs and other procoagulant biomarkers are elevated in AF patients, particularly in the LAA lumen. METHODS: From 13 AF patients and 12 controls a venous blood sample was drawn prior to cardiac surgery. Intraoperatively, venous blood and blood directly from the LAA was drawn. Plasma levels of EVs, including TF- and cell type specific antigen-bearing EVs, were measured using a protein microarray platform. Plasma levels of TF, von Willebrand factor (vWF), cell free deoxyribonucleic acid (cf-DNA), procoagulant phospholipids (PPLs), and total submicron particles were also evaluated. RESULTS: Significantly higher EV levels, including a several-fold higher median level of TF-bearing EVs were measured in AF patients compared with controls. Median concentrations of TF and vWF were approximately 40% and 30% higher, respectively, in the AF group than in the control group, while no significant differences in levels of cf-DNA, PPLs, or total submicron particles were observed. No significant differences in levels of any of the measured analytes were observed between intraoperative venous and LAA samples. CONCLUSIONS: Increased plasma concentrations of TF in AF patients are accompanied and probably at least partly explained by increased levels of TF-bearing EVs, which may be mechanistically involved in increased thrombogenicity in AF patients.
Assuntos
Fibrilação Atrial/sangue , Fibrilação Atrial/patologia , Vesículas Extracelulares/patologia , Tromboplastina/análise , Idoso , Idoso de 80 Anos ou mais , Apêndice Atrial/patologia , Fibrilação Atrial/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Trombose/sangue , Trombose/etiologia , Trombose/patologia , Fator de von Willebrand/análiseRESUMO
Cells release lipid-bound extracellular vesicles (EVs; exosomes, microvesicles and apoptotic bodies) containing proteins, lipids and RNAs into the circulation. Vesicles mediate intercellular communication between both neighboring and distant cells. There is substantial interest in using EVs as biomarkers for age-related diseases including cancer, and neurodegenerative, metabolic and cardiovascular diseases. The majority of research focuses on identifying differences in EVs when comparing disease states and matched controls. Here, we analyzed circulating plasma EVs in a cross-sectional and longitudinal study in order to address age-related changes in community-dwelling individuals. We found that EV concentration decreases with advancing age. Furthermore, EVs from older individuals were more readily internalized by B cells and increased MHC-II expression on monocytes compared with EVs from younger individuals, indicating that the decreased concentration of EVs with age may be due in part to increased internalization. EVs activated both monocytes and B cells, and activation of B cells by LPS enhanced EV internalization. We also report a relative stability of EV concentration and protein amount in individual subjects over time. Our data provide important information towards establishing a profile of EVs with human age, which will further aid in the development of EV-based diagnostics for aging and age-related diseases.
Assuntos
Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , Adulto , Idoso , Linfócitos B/metabolismo , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: Exosomes have been suggested as promising biomarkers in NSCLC because they contain proteins from their originating cells and are readily available in plasma. In this study, we explored the potential of exosome protein profiling in diagnosing lung cancers of all stages and various histological subtypes in patients. METHODS: Plasma was isolated from 581 patients (431 with lung cancer and 150 controls). The extracellular vesicle array was used to phenotype exosomes. The extracellular vesicle array contained 49 antibodies for capturing exosomes. Subsequently, a cocktail of biotin-conjugated CD9, CD81, and CD63 antibodies was used to detect and visualize captured exosomes. Multimarker models were made by combining two or more markers. The optimal multimarker model was evaluated by area under the curve (AUC) and random forests analysis. RESULTS: The markers CD151, CD171, and tetraspanin 8 were the strongest separators of patients with cancer of all histological subtypes versus patients without cancer (CD151: AUC = 0.68, p = 0.0002; CD171: AUC = 0.60, p = 0.0002; and TSPAN8: AUC = 0.60, p = 0.0002). The multimarker models with the largest AUC in the cohort of patients with all lung cancer histological subtypes and in the cohort of patients with adenocarcinoma only covered 10 markers (all cancer: AUC = 0.74 [95% confidence interval: 0.70-0.80]; adenocarcinoma only: AUC = 0.76 [95% confidence interval: 0.70-0.83]). In squamous cell cancer and SCLC, multimarker models did not exceed CD151 as an individual marker in separating patients with cancer from controls. CONCLUSION: We have demonstrated exosome protein profiling to be a promising diagnostic tool in lung cancer independently of stage and histological subtype. Multimarker models could make a fair separation of patients, demonstrating the perspectives of exosome protein profiling as a biomarker.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/diagnóstico , Proteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Exossomos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Extracellular vesicles (EVs) are one of several tools that cells use to communicate with each other. This communication is facilitated by a number of surface-associated proteins and the cargo of the vesicles. For several cancer types, the amount of EVs is observed to be up-regulated in patients compared to healthy individuals, possibly signifying the presence of an aberrant process. The hypoxia-induced release of EVs from cancer cells has been hypothesized to cause the malignant transformation of healthy recipient cells. In this study, the phenotype of cells and EVs from the ovarian cancer cell lines, COV504, SKOV3, and Pt4, were quantified and analysed under normoxic and hypoxic conditions. It was shown that both cells and EVs express common markers and that the EV phenotype varies more than the cellular phenotype. Additionally, cells subjected to 24 hours of hypoxia compared to normoxia produced more EVs. The phenotyping of EVs from cancer cell lines provides information about their molecular composition. This information may be translated to knowledge regarding the functionality of EVs and lead to a better understanding of their role in cancer.
RESUMO
BACKGROUND: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell-derived vesicles displaying various proteins on their membrane surfaces. In addition, they are readily available in blood samples where they constitute potential biomarkers of human diseases, such as cancer. Here, we examine the potential of distinguishing non-small cell lung carcinoma (NSCLC) patients from control subjects based on the differential display of exosomal protein markers. METHODS: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa-IV) disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array (EV Array) was used to phenotype exosomes directly from the plasma samples. The array contained 37 antibodies targeting lung cancer-related proteins and was used to capture exosomes, which were visualised with a cocktail of biotin-conjugated CD9, CD63 and CD81 antibodies. RESULTS: The EV Array analysis was capable of detecting and phenotyping exosomes in all samples from only 10 µL of unpurified plasma. Multivariate analysis using the Random Forests method produced a combined 30-marker model separating the two patient groups with an area under the curve of 0.83, CI: 0.77-0.90. The 30-marker model has a sensitivity of 0.75 and a specificity of 0.76, and it classifies patients with 75.3% accuracy. CONCLUSION: The EV Array technique is a simple, minimal-invasive tool with potential to identify lung cancer patients.
RESUMO
PURPOSE: Extracellular vesicles (EVs) are small, membrane-enclosed entities released from cells in many different biological systems. These vesicles play an important role in cellular communication by virtue of their protein, RNA, and lipid content, which can be transferred among cells. The complement of biomolecules reflects the parent cell, and their characterization may provide information about the presence of an aberrant process. Peripheral blood is a rich source of circulating EVs, which are easily accessible through a blood sample. An analysis of EVs in peripheral blood could provide access to unparalleled amounts of biomarkers of great diagnostic and prognostic value. The objectives of this review are to briefly present the current knowledge about EVs and to introduce a toolbox of selected techniques, which can be used to rapidly characterize clinically relevant properties of EVs from peripheral blood. METHODS: Several techniques exist to characterize the different features of EVs, including size, enumeration, RNA cargo, and protein phenotype. Each technique has a number of advantages and pitfalls. However, with the techniques presented in this review, a possible platform for EV characterization in a clinical setting is outlined. FINDINGS: Although EVs have great diagnostic and prognostic potential, a lack of standardization regarding EV analysis hampers the full use of this potential. Nevertheless, the analysis of EVs in peripheral blood has several advantages compared with traditional analyses of many soluble molecules in blood. IMPLICATIONS: Overall, the use of EV analysis as a diagnostic and prognostic tool has prodigious clinical potential.
Assuntos
Vesículas Extracelulares , Apoptose/fisiologia , Biomarcadores/sangue , Exossomos/química , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Humanos , Imunofenotipagem , Espectroscopia de Ressonância Magnética , MicroRNAs , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Prognóstico , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. METHODS: Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. RESULTS: The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 10(4) cells was needed to obtain signals or that only 2.5×10(4) exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1-10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this tetraspanin was considerably lower.