Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1154318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994202

RESUMO

Lung cancer is a global health problem affecting millions of people each year. Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with various conventional treatment available in the clinic. Application of these treatments alone often results in high rates of cancer reoccurrence and metastasis. In addition, they can cause damage to healthy tissues, resulting in many adverse effects. Nanotechnology has emerged as a modality for the treatment of cancer. When used in combination with nanoparticles, it is possible to improve the pharmacokinetic and pharmacodynamic profiles of pre-existing drugs used in cancer treatment. Nanoparticles have physiochemical properties such as small size which allowing passage through challenging areas of the body, and large surface area allows for higher doses of drugs to be brought to the tumor site. Nanoparticles can be functionalized which involves modifying the surface chemistry of the particles and allows for the conjugation of ligands (small molecules, antibodies, and peptides). Ligands can be chosen for their ability to target components that are specific to or are upregulated in cancer cells, such as targeting receptors on the tumor surface that are highly expressed in the cancer. This ability to precisely target the tumor can improve the efficacy of drugs and decrease toxic side effects. This review will discuss approaches used for targeting drugs to tumors using nanoparticles, provide examples of how this has been applied in the clinic and highlight future prospects for this technology.

2.
Materials (Basel) ; 13(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255217

RESUMO

Non-viral gene delivery using exogenous microRNAs is a potential strategy for fighting cancers with poor prognosis and which lack specific therapies, such as triple-negative breast cancer (TNBC). Herein we report the synthesis of six nontoxic electrostatic polymeric nanocapsules (P1 to P6) for microRNA delivery in TNBC cells. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize the nanopolyplexes, synthesized with Poly(L-Lysine) and hyaluronic acid (Ha). Studies on the activity of the ternary HA/PLI/miRNA-34 nanopolyplexes towards TNBC cell line MDA-MB-231 were conducted. The nanopolyplexes mediated intracellular restoration of tumor suppressor miR34a was evaluated by using Western blotting to quantify the expression level of the Bcl-2 protein. The results suggest that the P5, with a ratio PLI/Ha of 0.05, was the most promising for the delivery of miR-34a into TNBC cells; the P5 nanocapsules were able to reduce Bcl-2 expression at a protein level, and had an effect in the overall cell viability after 24 h treatment.

3.
Materials (Basel) ; 11(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082665

RESUMO

The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant (EHL) is a Type II Ribosome Inactivating Protein (RIP). Type II RIPs have shown anti-cancer properties and have great potential as therapeutic agents. Similarly, colloidal gold nanoparticles are successfully used in biomedical applications as they can be functionalised with ligands with high affinity and specificity for target cells to create therapeutic and imaging agents. Here we present the synthesis and characterization of gold nanoparticles conjugated with EHL and the results of a set of initial assays to establish whether the biological effect of EHL is altered by the conjugation. Gold nanoparticles functionalised with EHL (AuNPs@EHL) were successfully synthesised by bioconjugation with citrate gold nanoparticles (AuNPs@Citrate). The conjugates were analysed by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential analysis, and Transmission Electron Microscopy (TEM). Results indicate that an optimal functionalisation was achieved with the addition of 100 µL of EHL (concentration 1090 ± 40 µg/mL) over 5 mL of AuNPs (concentration [Au°] = 0.8 mM). Biological assays on the effect of AuNPs@EHL were undertaken on Caenorhabditis elegans, a free-living nematode commonly used for toxicological studies, that has previously been shown to be strongly affected by EHL. Citrate gold nanoparticles did not have any obvious effect on the nematodes. For first larval stage (L1) nematodes, AuNPs@EHL showed a lower biological effect than EHL. For L4 stage, pre-adult nematodes, both EHL alone and AuNPs@EHL delayed the onset of reproduction and reduced fecundity. These assays indicate that EHL can be conjugated to gold nanoparticles and retain elements of biocidal activity.

4.
PeerJ ; 3: e1206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312191

RESUMO

The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant is an N-acetyl-D-galactosamine specific Type II Ribosome Inactivating Protein (RIP); Type II RIPs have shown anti-cancer properties, and hence have potential as therapeutic agents. Here we present a modified protocol for the extraction and purification of the E. hyemalis lectin (EHL) using affinity chromatography. De novo amino acid sequencing of EHL confirms its classification as a Type II Ribosome Inactivating Protein. The biocidal properties of EHL have been investigated against the nematode Caenorhabditis elegans. Arrested first stage larvae treated with EHL have shown some direct mortality, with surviving larvae subsequently showing a range of phenotypes including food avoidance, reduced fecundity, developmental delay and constitutive dauer larvae formation. Both inappropriate dauer larvae development and failure to locate to bacterial food source are consistent with the disruption of chemosensory function and the ablation of amphid neurons. Further investigation indicates that mutations that disrupt normal amphid formation can block the EHL-induced dauer larvae formation. In combination, these phenotypes indicate that EHL is cytotoxic and suggest a cell specific activity against the amphid neurons of C. elegans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA