Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38180316

RESUMO

A Gram-stain-negative strain, designated as D2M1T was isolated from xylene-degrading enrichment culture and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene sequence analysis revealed that strain D2M1T belongs to the genus Acidovorax, with the highest 16S rRNA gene similarity to Acidovorax delafieldii DSM 64T (99.93 %), followed by Acidovorax radicis DSM 23535T (98.77 %) and Acidovorax kalamii MTCC 12652T (98.76 %). The draft genome sequence of strain D2M1T is 5.49 Mb long, and the G+C content of the genome is 64.2 mol%. Orthologous average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain D2M1T and its closest relatives were below the threshold values for species demarcation confirming that strain D2M1T is distinctly separated from its closest relatives. The whole genome analysis of the strain revealed a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including an I.2.C-type catechol 2,3-dioxygenase (C23O) gene. The strain was able to degrade benzene and ethylbenzene as sole sources of carbon and energy under aerobic and microaerobic conditions. Cells were facultatively aerobic rods and motile with a single polar flagellum. The predominant fatty acids (>10 % of the total) of strain D2M1T were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major ubiquinone of strain D2M1T was Q8, while the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on polyphasic data, it is concluded that strain D2M1T represents a novel species of the genus Acidovorax, for which the name of Acidovorax benzenivorans sp. nov. is proposed. The type strain of the species is strain D2M1T (=DSM 115238T=NCAIM B.02679T).


Assuntos
Hidrocarbonetos Aromáticos , Xilenos , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias
2.
Plants (Basel) ; 12(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447086

RESUMO

A spontaneous mutant of the duckweed Lemna gibba clone no. 7796 (known as strain G3, WT) was discovered. In this mutant clone, L. gibba clone no. 9602 (mt), the morphological parameters (frond length, frond width, root length, root diameter) indicated an enlarged size. A change in the frond shape was indicated by the decreased frond length/width ratio, which could have taxonomic consequences. Several different cell types in both the frond and the root were also enlarged. Flow cytometric measurements disclosed the genome size of the WT as 557 Mbp/1C and that of the mt strain as 1153 Mbp/1C. This represents the results of polyploidisation of a diploid clone to a tetraploid one. The mutant clone flowered under the influence of long day-treatment in half-strength Hutner's medium in striking contrast to the diploid WT. Low concentration of salicylic acid (<1 µM) induced flowering in the tetraploid mutant but not in the diploid plants. The transcript levels of nuclear-encoded genes of the photosynthetic apparatus (CAB, RBCS) showed higher abundance in light and less dramatic decline in darkness in the mt than in WT, while this was not the case with plastid-encoded genes (RBCL, PSAA, PSBA, PSBC).

3.
Front Microbiol ; 13: 929128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204622

RESUMO

Members of the genus Pseudomonas are known to be widespread in hydrocarbon contaminated environments because of their remarkable ability to degrade a variety of petroleum hydrocarbons, including BTEX (benzene, toluene, ethylbenzene and xylene) compounds. During an enrichment investigation which aimed to study microaerobic xylene degradation in a legacy petroleum hydrocarbon-contaminated groundwater, a novel Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated as MAP12T was isolated. It was capable of degrading benzene, toluene, meta- and para- xylene effectively under both aerobic and microaerobic conditions. The 16S rRNA gene sequence analysis revealed that strain MAP12T belongs to the genus Pseudomonas, with the highest 16S rRNA gene similarity to Pseudomonas linyingensis LYBRD3-7 T (98.42%), followed by Pseudomonas sagittaria JCM 18195 T (98.29%) and Pseudomonas alcaliphila JCM 10630 T (98.08%). Phylogenomic tree constructed using a concatenated alignment of 92 core genes indicated that strain MAP12T is distinct from any known Pseudomonas species. The draft genome sequence of strain MAP12T is 4.36 Mb long, and the G+C content of MAP12T genome is 65.8%. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed that strain MAP12T is distinctly separated from its closest neighbors (OrthoANI < 89 %; dDDH < 36%). Though several members of the genus Pseudomonas are well known for their aerobic BTEX degradation capability, this is the first report of a novel Pseudomonas species capable of degrading xylene under microaerobic conditions. By applying genome-resolved metagenomics, we were able to partially reconstruct the genome of strain MAP12 T from metagenomics sequence data and showed that strain MAP12 T was an abundant member of the xylene-degrading bacterial community under microaerobic conditions. Strain MAP12T contains ubiquinone 9 (Q9) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine as major polar lipids. The major cellular fatty acids of strain MAP12T are summed feature 3 (C16:1ω6c and/or C16:1ω7c), C16:0 and summed feature 8 (C18:1ω6c and/or C18:1ω7c). The results of this polyphasic study support that strain MAP12T represents a novel species of the genus Pseudomonas, hence the name of Pseudomonas aromaticivorans sp. nov. is proposed for this strain considering its aromatic hydrocarbon degradation capability. The type strain is MAP12T (=LMG 32466, =NCAIM B.02668).

4.
Antonie Van Leeuwenhoek ; 115(9): 1113-1128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841500

RESUMO

In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).


Assuntos
Benzeno , Comamonadaceae , Técnicas de Tipagem Bacteriana , Derivados de Benzeno , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tolueno
5.
Syst Appl Microbiol ; 45(4): 126339, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35714383

RESUMO

From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.


Assuntos
Actinomycetales , Nocardioides , Técnicas de Tipagem Bacteriana , Composição de Bases , Biofilmes , Carbamazepina , DNA Bacteriano/genética , Ácidos Graxos/análise , Ibuprofeno , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
6.
Arch Microbiol ; 204(6): 301, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524012

RESUMO

A Gram-negative bacterial strain, named Kb82, was isolated from agricultural soil and a polyphasic approach was used for characterisation and to determine its taxonomic position. Based on 16S rRNA gene sequence analysis, the highest similarity was found with Flavobacterium artemisiae SYP-B1015 (98.2%). The highest ANI (83.3%) and dDDH (26.5%) values were found with Flavobacterium ginsenosidimutans THG 01 and Flavobacterium fluviale HYN0086T, respectively. The isolate is aerobic with rod-shaped cells, positive for catalase and negative for oxidase tests. The DNA G+C content is 34.7 mol%. The only isoprenoid quinone is menaquinone 6 (MK-6). The major fatty acids are iso-C15:0, summed feature 3 (C16:1 ω7c/C16:1 ω6c) and iso-C17:0 3OH. The major polar lipid is phosphatidylethanolamine. On the bases of phenotypic characteristics and analysis of 16S rRNA gene sequences, it is concluded that strain Kb82T represents a novel species in the Flavobacterium genus, for which the name Flavobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain Kb82T (= LMG 31576T = NCAIM B.02635T).


Assuntos
Flavobacterium , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-35138241

RESUMO

Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to Pinisolibacter ravus E9T (97.36 %) and Siculibacillus lacustris SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1 ω7c/C18 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus Pinisolibacter and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).


Assuntos
Alphaproteobacteria/classificação , Benzeno , Filogenia , Xilenos , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Benzeno/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Hidrocarbonetos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xilenos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35099369

RESUMO

A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Ferto/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family Rhodobacteraceae. Its closest relatives are Tabrizicola alkalilacus DJCT (96.76% similarity) and Tabrizicola piscis K13M18T (96.76%), followed by Tabrizicola sediminis DRYC-M-16T (96.69 %), Rhodobacter sediminicola JA983T (96.62 %), Tabrizicola aquatica RCRI19T (96.47 %) and Cereibacter johrii JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18-28°C in the presence of 2-4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1 ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family Rhodobacteraceae, for which the name Szabonella alba gen. nov., sp. nov. is proposed.


Assuntos
Álcalis , Lagos , Filogenia , Rhodobacteraceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Lagos/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/classificação , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
9.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779758

RESUMO

A Gram-reaction-negative bacterial strain, designated Kb22T, was isolated from agricultural soil and characterized using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (94.39 %) to Sphingobacterium nematocida M-SX103T. The highest average nucleotide identity value (71.83 %) was found with Sphingobacterium composti T5-12T, and the highest amino acid identity value (66.65 %) was found with Sphingobacterium olei HAL-9T. Cells are aerobic, non-motile rods. The isolate was found to be positive for catalase and oxidase tests. The assembled genome of strain Kb22T has a total length of 4,06 Mb, the DNA G+C content is 38.1 mol%. The only isoprenoid quinone is menaquinone 7 (MK-7). The major fatty acids are iso-C15:0 (28.4%), summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) (25.7 %) and iso-C17:0 3-OH (19.7 %). Based on phenotypic characteristics and phylogenetic results, it is concluded that strain Kb22T is a member of the genus Sphingobacterium and represents a novel species for which the name Sphingobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain Kb22T (=LMG 31574T=NCAIM B.02638T).


Assuntos
Filogenia , Microbiologia do Solo , Sphingobacterium , Agricultura , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Antonie Van Leeuwenhoek ; 114(10): 1575-1584, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363180

RESUMO

A Gram-reaction-negative halotolerant bacterial strain, designated Ka21T, was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, highest similarity was found with Sphingobacterium alkalisoli Y3L14T (96.72%). Cells were observed to be aerobic, non-motile rods. The isolate was found to be able to grow between 0 and 10% of NaCl concentration. The assembled genome of strain Ka21T has a total length of 5.2 Mb with a G + C content of 41.0 mol%. According to the genome analysis, Ka21T encodes several glycoside hydrolases that may play a role in the degradation of accumulated plant biomass in the soil. Based on phenotypic characteristics and phylogenetic analysis, it is concluded that strain Ka21T represents a novel species in the Sphingobacterium genus for which the name Sphingobacterium pedocola sp. nov. is proposed. The type strain of the species is strain Ka21T (= LMG 31575T = NCAIM B.02636T).


Assuntos
Sphingobacterium , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Sphingobacterium/genética
11.
Int J Syst Evol Microbiol ; 70(3): 2108-2114, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32038004

RESUMO

The Gram-stain-negative, aerobic, non-motile, oxidase- and catalase-positive, rod-shaped yellow-coloured bacterial strain MG-N-17T was isolated from a water sample of Lake Ferto/Neusiedler See (Hungary). Results of phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain forms a distinct linage within the family Verrucomicrobiaceae of the phylum Verrucomicrobia, and its closest relatives are Verrucomicrobium spinosum DSM 4136T (94.38 %) and Roseimicrobium gellanilyticum DC2a-G7T (91.55 %). The novel bacterial strain prefers a weak alkaline environment and grows optimally between 22-28 °C in the absence of NaCl. The major isoprenoid quinones are MK-10, MK-11, MK-12 and MK-9. The major cellular fatty acids are anteiso-C15 : 0, C16 : 0, C16 : 1ω5c and iso-C14 : 0. The polar lipid profile contains phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and four unidentified glycolipids. The assembled draft genome of strain MG-N-17T had 44 contigs with an N50 value 348255 nt, 56.5× genome coverage, total length of 5 910 933 bp and G+C content of 56.9 mol%. Strain MG-N-17T (=DSM 106674T=NCAIM B.02643T) is proposed as the type strain of a new genus and species in the family Verrucomicrobiaceae, for which the name Phragmitibacter flavus gen. nov., sp. nov. is proposed.


Assuntos
Lagos/microbiologia , Filogenia , Verrucomicrobia/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hungria , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Verrucomicrobia/isolamento & purificação , Vitamina K 2/química
12.
Virology ; 536: 68-77, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401466

RESUMO

Cucumber mosaic virus induces specific recovery phenotype, namely cyclic mosaic symptoms on tobacco plants. We provide further evidence that besides the 2b suppressor protein, the coat protein (CP) also has a role in symptom recovery and it is connected to its phosphorylation. We analyzed the impact of the phosphorylated (S148D) and the non-phosphorylated (S148A) state of CP148 Ser on symptom formation, virion stability and the effect of CP and its mutants on 2b-mediated local GFP-silencing. We demonstrated that a single aa change could be responsible for preventing the recovery phenomenon as replacing the phosphorylatable Ser with Ala in the 148aa position abolishing the cyclic phenomenon. CP/S148A mutation equilibrates the accumulation of the virus during the infection both at RNA and protein level in N. tabacum L. cv Xanthi plants. In summary, we determined a regulatory effect of the CMV CP on the self-attenuation mechanism and downregulation of the suppressor effect of the 2b protein.


Assuntos
Proteínas do Capsídeo/metabolismo , Cucumovirus/metabolismo , Interações Hospedeiro-Patógeno/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Proteínas do Capsídeo/genética , Cucumovirus/genética , Cucumovirus/crescimento & desenvolvimento , Cucumovirus/patogenicidade , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Folhas de Planta/virologia , RNA Viral/genética , RNA Viral/metabolismo , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Vírion/patogenicidade
13.
Artigo em Inglês | MEDLINE | ID: mdl-33688800

RESUMO

A benzene, para- and meta-xylene-degrading Gram-stain-negative, aerobic, yellow-pigmented bacterium, designated as D2P1T, was isolated from a para-xylene-degrading enrichment culture. Phylogenetic analyses based on 16S rRNA genes showed that D2P1T shares a distinct phyletic lineage within the genus Hydrogenophaga and shows highest 16S rRNA gene sequence similarity to Hydrogenophaga taeniospiralis NBRC 102512T (99.2 %) and Hydrogenophaga palleronii NBRC 102513T (98.3 %). The draft genome sequence of D2P1T is 5.63 Mb long and the genomic DNA G+C content is 65.5 %. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed low genomic relatedness to its closest relatives (OrthoANI <86 %; dDDH <30 %). D2P1T contains ubiquinone 8 (Q-8) as the only respiratory quinone and phospholipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol as major polar lipids. The main whole-cell fatty acids of D2P1T are summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The polyphasic taxonomic results indicated that strain D2P1T represents a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga aromaticivorans sp. nov. is proposed. The type strain is D2P1T (=LMG 31780T=NCAIM B 02655T).

14.
Artigo em Inglês | MEDLINE | ID: mdl-33734953

RESUMO

Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Ferto/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23-33 °C in the presence of NaCl (1-2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae, for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.

15.
Int J Syst Evol Microbiol ; 68(9): 2807-2812, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29975186

RESUMO

A Gram-negative, aerobic, slightly yellow-pigmented bacterium, designated as SKLS-A10T, was isolated from groundwater sample of the 'Siklós' petroleum hydrocarbon contaminated site (Hungary). Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain SKLS-A10T formed a distinct phyletic lineage within the genus Sphingobium. It shared the highest 16S rRNA gene homology with Sphingobium abikonense DSM 23268T (97.29 %), followed by Sphingobium lactosutens DSM 23389T (97.23 %), Sphingobium phenoxybenzoativorans KCTC 42448T (97.16 %) and Sphingobium subterraneum NBRC 109814T (96.74 %). The predominant fatty acids (>5 % of the total) are C18 : 1ω7c, C14 : 0 2-OH, C16 : 1ω7c/iso C15 : 0 2-OH, C17 : 1ω6c and C16 : 0. The major ubiquinone is Q-10. The predominant polyamine is spermidine. The major polar lipids are sphingoglycolipid and diphosphatidylglycerol. The DNA G+C content of strain SKLS-A10T is 65.9 mol%. On the basis of evidence from this taxonomic study using a polyphasic approach, strain SKLS-A10T represents a novel species of the genus Sphingobium for which the name Sphingobiumaquiterrae sp. nov. is proposed. The type strain is SKLS-A10T (=DSM 106441T=NCAIM B. 02634T).


Assuntos
Água Subterrânea/microbiologia , Filogenia , Sphingomonadaceae/classificação , Poluentes Químicos da Água/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Hibridização de Ácido Nucleico , Petróleo/metabolismo , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Tolueno/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Xilenos/metabolismo
16.
Virus Res ; 251: 47-55, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29730309

RESUMO

A previous study showed that a single amino acid difference in the cucumber mosaic virus (CMV) capsid protein (CP) elicits unusual symptoms. The wild-type strain (CMV-R) induces green mosaic symptoms and malformation while the mutant strain (CMV-R3E79R) causes chlorotic lesions on inoculated leaves and strong stunting with necrosis on systemic leaves. Virion preparations of CMV-R and CMV-R3E79R were partially purified from Nicotiana clevelandii A. Gray and analysed by two-dimensional gel electrophoresis. Their separated protein patterns showed remarkable differences at the 50-75 kDa range, both in numbers and intensity of spots, with more protein spots for the mutant CMV. Mass spectrometry analysis demonstrated that the virion preparations contained host proteins identified as ATP synthase alpha and beta subunits as well as small and large Rubisco subunits, respectively. Virus overlay protein binding assay (VOPBA), immunogold electron microscopy and modified ELISA experiments were used to prove the direct interaction between the virus particle and the N. clevelandii ATP synthase F1 motor complex. Protein-protein docking study revealed that the electrostatic change in the mutant CMV can introduce stronger interactions with ATP synthase F1 complex. Based on our findings we suggest that the mutation present in the CP can have a direct effect on the long-distance movement and systemic symptoms. In molecular view the mutant CMV virion can lethally block the rotation of the ATP synthase F1 motor complex which may lead to cell apoptosis, and finally to plant death.


Assuntos
Proteínas do Capsídeo/metabolismo , Cucumovirus/fisiologia , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Mutação Puntual , ATPases Translocadoras de Prótons/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Cucumovirus/genética , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Espectrometria de Massas , Microscopia Imunoeletrônica , Simulação de Acoplamento Molecular , Peso Molecular , Ligação Proteica , Ribulose-Bifosfato Carboxilase/metabolismo
17.
Protoplasma ; 255(3): 829-839, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29230547

RESUMO

The recently synthesized isocyanonaphtalene derivatives ACAIN and CACAIN are fluorochromes excitable at wavelengths of around 366 nm and bind cysteine-rich proteins with hydrophobic motifs. We show that these compounds preferentially label tonoplasts in living Arabidopsis and tobacco (Nicotiana tabacum SR1) cells. ACAIN-labeled membranes co-localized with the GFP signal in plants expressing GFP-δ-TIP (TIP2;1) (a tonoplast aquaporin) fusion protein. ACAIN preserved the dynamics of vacuolar structures. tip2;1 and triple tip1;1-tip1;2-tip2;1 knockout mutants showed weaker ACAIN signal in tonoplasts. The fluorochrome is also suitable for the labeling and detection of specific (cysteine-rich, hydrophobic) proteins from crude cell protein extracts following SDS-PAGE and TIP mutants show altered labeling patterns; however, it appears that ACAIN labels a large variety of tonoplast proteins. ACAIN/CACAIN could be used for the detection of altered vacuolar organization induced by the heptapeptide natural toxin microcystin-LR (MCY-LR), a potent inhibitor of both type 1 and 2A protein phosphatases and a ROS inducer. As revealed both in plants with GFP-TIP2;1 fusions and in wild-type (Columbia) plants labeled with ACAIN/CACAIN, MCY-LR induces the formation of small vesicles, concomitantly with the absence of the large vegetative vacuoles characteristic for differentiated cells. TEM studies of MCY-LR-treated Arabidopsis cells proved the presence of multimembrane vesicles, with characteristics of lytic vacuoles or autophagosomes. Moreover, MCY-LR is a stronger inducer of small vesicle formation than okadaic acid (which inhibits preferentially PP2A) and tautomycin (which inhibits preferentially PP1). ACAIN and CACAIN emerge as useful novel tools to study plant vacuole biogenesis and programmed cell death.


Assuntos
Arabidopsis/citologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/metabolismo , Nicotiana/citologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Células Vegetais/metabolismo , Vacúolos/metabolismo , Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Células Vegetais/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Coloração e Rotulagem , Nicotiana/metabolismo , Vacúolos/efeitos dos fármacos
18.
Int J Syst Evol Microbiol ; 67(11): 4565-4571, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945538

RESUMO

A novel alphaproteobacterium, strain RAM11T, belonging to the family Rhizobiaceae was isolated from the pool water of a thermal bath in Budapest, Hungary. Based on the 16S rRNA gene sequence strain RAM11T shows the highest sequence similarity values to Ensifer adhaerens Casida A (97.44 %), to Ensifer (syn. Sinorhizobium) americanus CFNEI 156T (96.87 %) and to Rhizobium azooxidifex Po 20/26T (96.76 %). The new bacterium is strictly aerobic, its optimum growth occurs at 20-37 °C, between pH 7 and 9 and without NaCl. It is motile due to a single polar flagellum, capable of budding and forms rosettes in liquid culture. The major isoprenoid quinone of strain RAM11T is Q-10, the major cellular fatty acids are C18 : 1ω7c and 11-MeC18 : 1ω7c. The polar lipid profile contains phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, an unidentified aminolipid and an unidentified phospholipid. The G+C content of DNA of the type strain is 62.9 mol%. Strain RAM11T (=DSM 29853T=NCAIM B.02618T) is proposed as type strain of a new genus and species with the proposed name Gellertiella hungarica gen. nov., sp. nov.


Assuntos
Filogenia , Rhizobiaceae/classificação , Piscinas , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
19.
Proc Natl Acad Sci U S A ; 112(49): 15232-7, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26401023

RESUMO

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


Assuntos
Cisteína/química , Medicago truncatula/fisiologia , Mutação , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/química , Simbiose
20.
J Plant Physiol ; 169(16): 1615-22, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22739262

RESUMO

Alkaline pH values and bicarbonate greatly reduce the mobility and uptake of Fe, causing Fe deficiency chlorosis. In the present work, the effects of pH and bicarbonate on the uptake and accumulation of Fe in the roots of cucumber were studied by Mössbauer spectroscopy combined with physiological tests and diaminobenzidine enhanced Perls staining. Mössbauer spectra of Fe-deficient cucumber roots supplied with 500 µM (57)Fe(III)-citrate at different pH values showed the presence of an Fe(II) and an Fe(III) component. As the pH was increased from 4.5 to 7.5, the root ferric chelate reductase (FCR) activity decreased significantly and a structural change in the Fe(III) component was observed. While at pH 4.5 the radial intrusion of Fe reached the endodermis, at pH 7.5, Fe was found only in the outer cortical cell layers. The Mössbauer spectra of Fe-deficient plants supplied with Fe(III)-citrate in the presence of bicarbonate (pH 7.0 and 7.5) showed similar Fe components, but the relative Fe(II) concentration compared to that measured at pH values 6.5 and 7.5 was greater. The Mössbauer parameters calculated for the Fe(II) component in the presence of bicarbonate were slightly different from those of Fe(II) alone at pH 6.5-7.5, whereas the FCR activity was similarly low. Fe incorporation into the root apoplast involved only the outer cortical cell layers, as in the roots treated at pH 7.5. In Fe-sufficient plants grown with Fe(III)-citrate and 1mM bicarbonate, Fe precipitated as granules and was in diffusely scattered grains on the root surface. The "bicarbonate effect" may involve a pH component, decreasing both the FCR activity and the acidification of the apoplast and a mineralization effect leading to the slow accumulation of extraplasmatic Fe particles, forming an Fe plaque and trapping Fe and other minerals in biologically unavailable forms.


Assuntos
Cucumis sativus/efeitos dos fármacos , FMN Redutase/metabolismo , Compostos Férricos/farmacologia , Ferro/metabolismo , Raízes de Plantas/efeitos dos fármacos , Bicarbonatos/farmacologia , Cucumis sativus/citologia , Cucumis sativus/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Concentração de Íons de Hidrogênio , Deficiências de Ferro , Modelos Biológicos , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Espectroscopia de Mossbauer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA