Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 9(1): 95, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631607

RESUMO

BACKGROUND: Mesenchymal stem cells have potential applications in inflammatory bowel disease due to their immunomodulatory properties. Our aim was to evaluate the feasibility, safety and efficacy of endoscopic administration of adipose-derived mesenchymal stem cells (ASCs) in a colitis model in rats. METHODS: Colitis was induced in rats by rectal trinitrobenzenesulfonic acid (TNBS). After 24 h ASCs (107 cells) or saline vehicle were endoscopically injected into the distal colon. Rats were followed for 11 days. Daily weight, endoscopic score at days 1 and 11, macroscopic appearance at necropsy, colon length and mRNA expression of Foxp3 and IL-10 in mesenteric lymph nodes (MLN) were analyzed. RESULTS: Endoscopic injection was successful in all the animals. No significant adverse events or mortality due to the procedure occurred. Weight evolution was significantly better in the ASC group, recovering initial weight by day 11 (- 0.8% ± 10.1%, mean ± SD), whereas the vehicle group remained in weight loss (- 6.7% ± 9.2%, p = 0.024). The endoscopic score improved in the ASC group by 47.1% ± 5.3% vs. 21.8% ± 6.6% in the vehicle group (p < 0.01). Stenosis was less frequent in the ASC group (4.8% vs. 41.2%, p < 0.01). Colon length significantly recovered in the ASC group versus the vehicle group (222.6 ± 17.3 mm vs. 193.6 ± 17.9 mm, p < 0.001). The endoscopic score significantly correlated with weight change, macroscopic necropsy score and colon length. Foxp3 and IL-10 mRNA levels in MLN recovered with ASC treatment. CONCLUSIONS: ASC submucosal endoscopic injection is feasible, safe and ameliorates TNBS-induced colitis in rats, especially stenosis.


Assuntos
Colite Ulcerativa/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Tecido Adiposo/citologia , Animais , Células Cultivadas , Colite Ulcerativa/etiologia , Colite Ulcerativa/patologia , Constrição Patológica , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico/toxicidade
2.
Front Immunol ; 8: 638, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642759

RESUMO

Mesenchymal stem cells (MSCs) have a large potential in cell therapy for treatment of inflammatory and autoimmune diseases, thanks to their immunomodulatory properties. The encouraging results in animal models have initiated the translation of MSC therapy to clinical trials. In cell therapy protocols with MSCs, administered intravenously, several studies have shown that a small proportion of infused MSCs can traffic to the draining lymph nodes (LNs). This is accompanied with an increase of different types of regulatory immune cells in the LNs, suggesting the importance of migration of MSCs to the LNs in order to contribute to immunomodulatory response. Intranodal (IN), also referred as intralymphatic, injection of cells, like dendritic cells, is being proposed in the clinic for the treatment of cancer and allergy, showing that this route of administration is clinically safe and efficient. In this study, we investigated, for the first time, the biodistribution and the efficacy of Luciferase+ adipose-derived MSCs (Luci-eASCs), infused through the inguinal LNs (iLNs), in normal mice and in inflamed mice with colitis. Most of the Luci-eASCs remain in the iLNs and in the adipose tissue surrounding the inguinal LNs. A small proportion of Luci-eASCs can migrate to other locations within the lymphatic system and to other tissues and organs, having a preferential migration toward the intestine in colitic mice. Our results show that the infused Luci-eASCs protected 58% of the mice against induced colitis. Importantly, a correlation between the response to eASC treatment and a higher accumulation of eASCs in popliteal, parathymic, parathyroid, and mesenteric LNs were found. Altogether, these results suggest that IN administration of eASCs is feasible and may represent an effective strategy for cell therapy protocols with human adipose-derived MSCs in the clinic for the treatment of immune-mediated disorders.

3.
Cytotherapy ; 15(7): 753-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23602595

RESUMO

In the past decade, the therapeutic value of mesenchymal stromal cells (MSCs) has been studied in various indications, thereby taking advantage of their immunosuppressive properties. Easy procurement from bone marrow, adipose tissue or other sources and conventional in vitro expansion culture have made their clinical use attractive. Bridging the gap between current scientific knowledge and regulatory prospects on the transformation potential and possible tumorigenicity of MSCs, the Cell Products Working Party and the Committee for Advanced Therapies organized a meeting with leading European experts in the field of MSCs. This meeting elucidated the risk of potential tumorigenicity related to MSC-based therapies from two angles: the scientific perspective and the regulatory point of view. The conclusions of this meeting, including the current regulatory thinking on quality, nonclinical and clinical aspects for MSCs, are presented in this review, leading to a clearer way forward for the development of such products.


Assuntos
Carcinogênese , Proliferação de Células , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/genética , Humanos , Células-Tronco Mesenquimais/metabolismo
4.
Tissue Eng Part A ; 18(7-8): 852-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22059379

RESUMO

Human adipose-derived stem cells (hASC) are mesenchymal stem cells with reduced immunogenicity and the ability to modulate immune responses. APRIL and BAFF proteins are overexpressed in inflammatory and autoimmune diseases for which allogeneic hASC therapy is currently under clinical investigation. Modification of hASC properties by the tissue microenvironment could be a critical factor in patient outcome and is still not well understood. Our aim was to characterize the APRIL/BAFF system in hASC by analyzing the ligand and receptor expression patterns, the effects mediated by APRIL and BAFF on hASC, and the underlying signaling. We found that hASC express the tumor necrosis factor proteins APRIL (a proliferation-inducing ligand) and BAFF (B cell-activator factor) as well as their receptors TACI (transmembrane activator and calcium-modulator and cyclophilin ligand interactor), BCMA (B cell maturation antigen) and the BAFF-specific receptor (BAFF-R). APRIL and BAFF secretion was differentially enhanced by CXCL12 and interferon (IFN)-γ, implicated in hASC-mediated migration and immunosuppression, respectively. In addition, APRIL and BAFF induced rapid phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt kinases and promoted an increase in hASC proliferation, without affecting the immunosuppressive capacity of these cells. The use of specific chemical inhibitors indicated that the PI3K transduction pathway is involved in hASC basal growth and that APRIL- and BAFF-mediated effects are ERK-dependent. These results provide new information about the molecular mechanisms that underlie APRIL and BAFF secretion and signaling in hASC, and are of special relevance for the use of allogeneic hASC as therapeutic tools.


Assuntos
Tecido Adiposo/citologia , Fator Ativador de Células B/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/metabolismo , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Interleucina-8 , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
5.
J Mol Cell Cardiol ; 49(5): 771-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713059

RESUMO

Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium.


Assuntos
Tecido Adiposo/citologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Idoso , Indutores da Angiogênese/metabolismo , Animais , Capilares/patologia , Diferenciação Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Testes de Função Cardíaca , Humanos , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Ratos , Ultrassonografia
6.
J Neurosci ; 30(4): 1502-11, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20107078

RESUMO

Transforming growth factors-beta (TGF-betas) signal through type I and type II serine-threonine kinase receptor complexes. During ligand binding, type II receptors recruit and phosphorylate type I receptors, triggering downstream signaling. BAMBI [bone morphogenetic protein (BMP) and activin membrane-bound inhibitor] is a transmembrane pseudoreceptor structurally similar to type I receptors but lacks the intracellular kinase domain. BAMBI modulates negatively pan-TGF-beta family signaling; therefore, it can be used as an instrument for unraveling the roles of these cytokines in the adult CNS. BAMBI is expressed in regions of the CNS involved in pain transmission and modulation. The lack of BAMBI in mutant mice resulted in increased levels of TGF-beta signaling activity, which was associated with attenuation of acute pain behaviors, regardless of the modality of the stimuli (thermal, mechanical, chemical/inflammatory). The nociceptive hyposensitivity exhibited by BAMBI(-/-) mice was reversed by the opioid antagonist naloxone. Moreover, in a model of chronic neuropathic pain, the allodynic responses of BAMBI(-/-) mice also appeared attenuated through a mechanism involving delta-opioid receptor signaling. Basal mRNA and protein levels of precursor proteins of the endogenous opioid peptides proopiomelanocortin (POMC) and proenkephalin (PENK) appeared increased in the spinal cords of BAMBI(-/-). Transcript levels of TGF-betas and their intracellular effectors correlated directly with genes encoding opioid peptides, whereas BAMBI correlated inversely. Furthermore, incubation of spinal cord explants with activin A or BMP-7 increased POMC and/or PENK mRNA levels. Our findings identify TGF-beta family members as modulators of acute and chronic pain perception through the transcriptional regulation of genes encoding the endogenous opioids.


Assuntos
Vias Aferentes/metabolismo , Proteínas de Membrana/metabolismo , Nervos Periféricos/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Medula Espinal/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Encefalinas/genética , Encefalinas/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Antagonistas de Entorpecentes/farmacologia , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Regulação para Cima/genética
7.
Arthritis Rheum ; 60(4): 1006-19, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19333946

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by loss of immunologic self tolerance and characterized by chronic joint inflammation. Adult mesenchymal stem cells (MSCs) were recently found to suppress effector T cell responses and to have beneficial effects in various immune disorders. The purpose of this study was to examine a new therapeutic strategy for RA based on the administration of human adipose-derived MSCs (AD-MSCs). METHODS: DBA/1 mice with collagen-induced arthritis were treated with human AD-MSCs after disease onset, and clinical scores were determined. Inflammatory response was determined by measuring the levels of different mediators of inflammation in the joints and serum. The Th1-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with the autoantigen. The number of Treg cells and the suppressive capacity on self-reactive Th1 cells were also determined. RESULTS: Systemic infusion of human AD-MSCs significantly reduced the incidence and severity of experimental arthritis. This therapeutic effect was mediated by down-regulating the 2 deleterious disease components: the Th1-driven autoimmune and inflammatory responses. Human AD-MSCs decreased the production of various inflammatory cytokines and chemokines, decreased antigen-specific Th1/Th17 cell expansion, and induced the production of antiinflammatory interleukin-10 in lymph nodes and joints. Human AD-MSCs also induced de novo generation of antigen-specific CD4+CD25+FoxP3+ Treg cells with the capacity to suppress self-reactive T effector responses. CONCLUSION: Human AD-MSCs emerge as key regulators of immune tolerance by inducing the generation/activation of Treg cells and are thus attractive candidates for a cell-based therapy for RA.


Assuntos
Tecido Adiposo/citologia , Artrite Experimental/terapia , Artrite Reumatoide/terapia , Tolerância Imunológica/imunologia , Transplante de Células-Tronco Mesenquimais , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Transplante Heterólogo
8.
Tissue Eng Part A ; 15(10): 2795-806, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19231921

RESUMO

Human adipose-derived mesenchymal stem cells (hASCs) are mesenchymal stem cells (MSCs) with reduced immunogenicity and capability to modulate immune responses. Whereas the immunosuppressive activity of bone marrow-MSCs has received considerable attention during the last few years, the specific mechanisms underlying hASC-mediated immunosuppression have been poorly studied. Recent studies comparing both cell types have reported differences at transcriptional and proteomic levels, suggesting that hASCs and bone marrow-MSCs, while having similarities, are quite different. This suggests that different mechanisms of immunosuppression may apply. Here, we report that hASCs inhibit peripheral blood mononuclear cells (PBMCs), and CD4(+) and CD8(+) T cell proliferation in both cell-cell contact and transwell conditions, which is accompanied by a reduction of proinflammatory cytokines. We demonstrate that hASCs do not constitutively express immunomodulatory factors. Conditioned supernatants from hASCs stimulated by IFN-gamma, PBMCs, or activated PBMCs highly inhibited PBMC proliferation, indicating that inhibitory factors are released upon hASC activation. Many factors have been involved in MSC-mediated immunosuppression, including IFN-gamma, IL-10, hepatocyte growth factor, prostaglandin E2, transforming growth factor-beta1, indoleamine 2,3-dioxygenase (IDO), nitric oxide, and IL-10. Using pharmacological inhibitors, neutralizing antibodies, and genetically modified hASCs that constitutively express or silence IDO enzyme, we demonstrate that, in the case of hASCs, the IFN-gamma/IDO axis is essential. Taken together, our data support the key role of IDO in the therapeutic use of hASC on immunomediated diseases.


Assuntos
Adipócitos/citologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Linfócitos/citologia , Células-Tronco Mesenquimais/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Dinoprostona/metabolismo , Citometria de Fluxo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Interleucina-10/metabolismo , Leucócitos Mononucleares/citologia , Linfócitos/imunologia , Óxido Nítrico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Engenharia Tecidual , Fator de Crescimento Transformador beta1/metabolismo
9.
Gastroenterology ; 136(3): 978-89, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19135996

RESUMO

BACKGROUND & AIMS: Crohn's disease is a chronic disease characterized by severe T-helper (Th)1 cell-driven inflammation of the colon partially caused by a loss of immune tolerance against mucosal antigens. Mesenchymal stem cells were recently described to suppress effector T-cell responses and have therapeutic effects in some immune disorders. Here, we investigated the potential therapeutic effects of human adipose-derived mesenchymal stem cells (hASCs) in a model of inflammatory bowel disease. METHODS: Mice with trinitrobenzene sulfonic acid-induced colitis were treated with hASCs after onset of disease and clinical scores were evaluated. Inflammatory response was determined by measuring the levels of different inflammatory mediators in colon and serum. Th1-mediated effector responses were evaluated by determining the proliferation and cytokine profile of activated mesenteric lymph node cells. The number of regulatory T cells and the suppressive capacity on Th1 cell responses was determined. RESULTS: Systemic infusion of hASCs or murine ASCs ameliorated the clinical and histopathologic severity of colitis, abrogating body weight loss, diarrhea, and inflammation and increasing survival (P < .001). This therapeutic effect was mediated by down-regulating both Th1-driven autoimmune and inflammatory responses. ASCs decreased a wide panel of inflammatory cytokines and chemokines and increased interleukin-10 levels (P < .001), directly acting on activated macrophages. hASCs also impaired Th1 cell expansion and induced/activated CD4(+)CD25(+)FoxP3(+) regulatory T cells with suppressive capacity on Th1 effector responses in vitro and in vivo (P < .001). CONCLUSIONS: hASCs emerge as key regulators of immune tolerance and as attractive candidates for a cell-based therapy for Crohn's disease.


Assuntos
Tecido Adiposo/citologia , Doença de Crohn/imunologia , Doença de Crohn/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Autoimunidade , Células Cultivadas , Colite/imunologia , Colite/patologia , Colite/terapia , Doença de Crohn/patologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
10.
Development ; 135(9): 1589-95, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18356246

RESUMO

Although the T-box family of transcription factors function in many different tissues, their role in liver development is unknown. Here we show that Tbx3, the T-box gene that is mutated in human ulnar-mammary syndrome, is specifically expressed in multipotent hepatic progenitor cells, ;hepatoblasts', isolated from the developing mouse liver. Tbx3-deficient hepatoblasts presented severe defects in proliferation as well as uncontrollable hepatobiliary lineage segregation, including the promotion of cholangiocyte (biliary epithelial cell) differentiation, which thereby caused abnormal liver development. Deletion of Tbx3 resulted in the increased expression of the tumor suppressor p19(ARF) (Cdkn2a), which in turn induced a growth arrest in hepatoblasts and activated a program of cholangiocyte differentiation. Thus, Tbx3 plays a crucial role in controlling hepatoblast proliferation and cell-fate determination by suppressing p19(ARF) expression and thereby promoting liver organogenesis.


Assuntos
Diferenciação Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Fígado/citologia , Células-Tronco Multipotentes/citologia , Proteínas com Domínio T/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Fígado/embriologia , Camundongos , Células-Tronco Multipotentes/fisiologia
11.
Nature ; 427(6970): 121-8, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14712268

RESUMO

During vertebrate embryo development, the breaking of the initial bilateral symmetry is translated into asymmetric gene expression around the node and/or in the lateral plate mesoderm. The earliest conserved feature of this asymmetric gene expression cascade is the left-sided expression of Nodal, which depends on the activity of the Notch signalling pathway. Here we present a mathematical model describing the dynamics of the Notch signalling pathway during chick embryo gastrulation, which reveals a complex and highly robust genetic network that locally activates Notch on the left side of Hensen's node. We identify the source of the asymmetric activation of Notch as a transient accumulation of extracellular calcium, which in turn depends on left-right differences in H+/K+-ATPase activity. Our results uncover a mechanism by which the Notch signalling pathway translates asymmetry in epigenetic factors into asymmetric gene expression around the node.


Assuntos
Padronização Corporal , Sinalização do Cálcio , Ácido Egtázico/análogos & derivados , Proteínas de Membrana/metabolismo , Fatores de Transcrição , Animais , Proteínas Aviárias , Padronização Corporal/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Embrião de Galinha , Ácido Egtázico/farmacologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Proteínas de Membrana/genética , Modelos Biológicos , Proteína Nodal , Omeprazol/farmacologia , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Notch1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Notch , Proteínas Serrate-Jagged , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
12.
Nat Cell Biol ; 5(6): 513-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12766772

RESUMO

The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI3K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.


Assuntos
Extremidades/embriologia , Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Animais , Apoptose , Embrião de Galinha , Fosfatase 6 de Especificidade Dupla , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativação Enzimática , Fator 8 de Crescimento de Fibroblasto , Fatores de Crescimento de Fibroblastos/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Dados de Sequência Molecular , Morfogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA